
MODEL-DRIVEN DEVELOPMENT OF

ARINC 653 CONFIGURATION TABLES

Ákos Horváth, Dániel Varró, Budapest University of Technology and Economics
Department of Measurement and Information, Budapest, Hungary

Tobias Schoofs, GMV, Lisbon, Portugal

Abstract

Model-driven development (MDD) has become
a key technique in systems and software engineering,
including the aeronautic domain. It facilitates on
systematic use of models from a very early phase of
the design process and through various model
transformation steps (semi-)automatically generates
source code and documentation. However, on one
hand, the use of model-driven approaches for the
development of configuration data is not as widely
used as for source code synthesis. On the other hand,
we believe that, particular systems that make heavy
use of configuration tables like the ARINC 653
standard can benefit from model-driven design by (i)
automating error-prone configuration file editing and
(ii) using model based validation for early error
detection.

In this paper, we will present the results of the
European project DIANA that investigated the use of
MDD in the context of Integrated Modular Avionics
(IMA) and the ARINC 653 standard. In the scope of
the project, a tool chain was implemented that
generates ARINC 653 configuration tables from
high-level architecture models. The tool chain was
integrated with different target systems (VxWorks
653, SIMA) and evaluated during case studies with
real-world and real-sized avionics applications.

Introduction

The ARINC 653 standard [1] has taken a leading
role within the aeronautical industry in the
development of safety-critical systems based on the
Integrated Modular Avionics (IMA) concept. One of
the main promises of IMA is cost saving in reduced
development, integration and verification and
validation effort.

In case of ARINC 653 compliant platforms
many deployment and implementation details are
defined in the configuration tables. Typically, these
configurations are hand defined by the system

architect with limited tool support that only ease (i)
the manipulation of its XML representation, (ii) their
validation to the ARINC 653 schema definition and
some consistency checks.

Unfortunately, despite the inherent complexity
of ARINC 653 configurations, current tools
supporting configuration design offer very low-level
support directly on the XML representation level.
However, existing tools lack support for (1) capturing
the development process for configurations, (2)
validating design constraints for configurations on-
the-fly, (3) recording explicitly the critical design
decisions made by the system architect, and (4)
providing traceability between high-level
requirements and the configuration tables, which
require hand-crafted traceability lists. As a result,
verification of configuration tables is a tedious
activity.

Model-driven development (MDD) has become
a key technique in systems and software engineering.
It facilitates on systematic use of models from a very
early phase of the design process. Based on high-
level modeling standards (like UML , SysML [2] or
AADL [3]), traditional MDD separates business and
application logic from underlying platform
technology by using platform independent models
(PIM) to capture the system requirements, and
platform specific models (PSM) to specify the target
system on the implementation platforms (ADA, Java,
C++). PSM may refer to models or to platform-
specific artifacts like source code and configuration
elements; the latter are automatically generated from
PIM and PSMs, respectively, using automatic model
transformations.

However, as MDD is attracting increasing
attention in safety-critical system development [4],
the original approach needs to be adapted to be in-
line with the rigid certification requirements (e.g.,
DO-178B [5]) imposed by authorities.

In the paper, we present a framework for
systematically designing standard ARINC 653
configuration tables with additional support for
configuring (i) the Wind River VxWorks 653 Safety
Critical RTOS [6] and (ii) the GMV SIMA ARINC
653 simulation platform [7]. Additionally, parallel to
the development process our approach generates end-
to-end traceability information to support
certification Our toolkit is implemented in the
Eclipse framework, and it is built upon the principles
of Model-Driven Development (MDD).

The framework was developed in the context of
the DIANA [8] project financed by the European
Commission through the Sixth Framework
Programme in close collaboration with leading
avionics experts and airframers including GMV,
AleniaSia, Atego, Dassault, Embraer, NLR,
THALES, and academic partners of TU Budapest
and Karlsruhe Institute of Technology.

Outline

In order to introduce our approach we (i) outline
the basics of model-driven development for safety
critical system, (ii) presents our intermediate models
and target platforms (iii) give a motivating air
conditioning case study, (iv) introduce our PIM-PSM
mapping approach, (v) highlight a contract based
V&V approach and finally (vi) conclude the work.

Model-Driven Development for Safety

Critical Systems

Models are prime artifacts of engineering. In
system development, they have played an important
role as a way to capture real world notions as well as
abstract constructs. In fact, system architects have
been using models and modeling techniques long
before model-driven development emerged as a
trend, e.g. in the form of entity-relationship diagrams,
graph-like data structures, abstract syntax trees etc.
However, the term Model-Driven Development
(MDD) implies that models play a central role that
encompasses the entire system development
lifecycle, starting from requirement analysis, system
design, implementation, to verification and even
maintenance.

Model-driven development aims to increase the
efficiency and productivity of the software

development process by introducing precise
engineering practices based on formal modeling
techniques. By this approach, design intelligence is
applied to capture all relevant information in the form
of abstract models. First, these models can be used
for documentation purposes to store well-structured
information about the system-under-design.
Moreover, models can also be used for generative
development, where target design artifacts (source
code, configuration tables, test cases, textual
documentation, etc.) is (semi-)automatically derived
by tools. Finally, models can also be used for early
validation, where important properties of the
products (such as reliability, performance,
robustness, security, complexity) can be evaluated
before actual implementation begins. All of these
techniques aim at reducing costs and risks.

MDD emphasizes the clear distinction between
Platform Independent Models (PIM) and Platform
Specific Models (PSM), thus, software development
in MDD is envisioned as a three-step process.

First, the Platform Independent Model (PIM)
is designed. The main purpose of this model is to
capture the underlying business logic without specific
implementation details and, this way, help portability
to other target platforms (e.g., a prototyping
platform, using Java, for instance; the final target
platform, ARINC 653 for the aeronautical world or
AUTOSAR [9] for the automobile domain based on
ADA or C).

The second step is to generate a Platform

Specific Model (PSM), which contains additional
models, and represents an implementation of the
system under design which can run on the target
platform. The transition between PIM and PSM
(PIM-PSM mapping), should typically be facilitated
using automated model transformation technology.

Finally, software artifacts (e.g., configuration
files, source code, documentation, etc.) are

generated from the Platform Specific Model for the
target platform. Again, code generation should be as
extensive as possible, in order to minimize the
amount of necessarily slow and error-prone manual
coding. This, in turn, requires PSMs that are
expressive enough, not only from a static, but also
from a dynamic point of view of the system, to
produce all of the application artifacts.

Enabling technologies
MDD relies on two key technologies that allow

the definition and manipulation of models called,
metamodeling and model transformation,
respectively.

Metamodeling is a methodology for the
definition of modeling languages. A metamodel
specifies the syntax (structure) of a language.
Metamodels are expressed using a metamodeling
language that itself is a modeling language. The
metamodel can also be interpreted as the object-
oriented data model of the language under design.
There are several different metamodeling
environments, most widely used are the Meta Object
Facility (MOF) [10] from OMG and the Eclipse
Modeling Framework (EMF) [11] (a subset of MOF).

Model transformations (MT) are the backbone
of the MDD concept. Primarily, model
transformations are responsible for the PIM-to-PSM
transformations. However, MTs can also define views
on models and synchronization between different
models (like UML class diagrams and relational
database schemas). Moreover, engineering models
are frequently mapped into mathematical domains by
model transformations to carry out model analysis as
early model based verification. Well-known
approaches for high-level declarative specification of
model transformations are the ATLAS Transformation
Language (ATL) [12], the VIATRA2 (VIsual
Automated model TRAnsformations) system [13]
and the GReAT (Graph Rewrite And
Transformation) framework [14].

Challenges in MDD for Safety Critical Systems

In order to support the specific needs of the
safety-critical development processes, we followed
the guidelines introduced in the EU-FP7 INDEXYS
[15] project for the definition of a MDD means for
embedded systems. Based on these guidelines the
main challenges of MDD for safety-critical systems
are the following (depicted in Figure 1.):

V&V activities need to be tightly integrated

[16] into the development process to provide early
feedback on requirements, specification, design and
implementation. This requires a continuous
verification activity from early specification through
design to development. On top of that it has to be in-

line with rigid certification requirements (e.g., DO-
178B) imposed by authorities like FAA or EASA.

The PIM-PSM mapping process [17] needs to
support both automatic and user-driven design steps
as many critical design decisions are taken during the
mapping process and cannot be fully automated.
Furthermore, these decisions need to be recorded for
traceability related certification requirements.

PSM needs to support the different viewpoints

of the system [17] with a systematic separation of
system level aspects (e.g., functionality,
dependability, security) and a strong separation
between architectural and behavioral aspects. This
allows to use appropriate COTS or proprietary tools
for the generation of textual artifacts.

Finally, PSM needs to support synthesis not
only for source code but also system configuration,
certification and documentation artifacts.

Figure 1: MDD for Safety Critical System Development

Modeling Architecture of the DIANA

approach

Within the DIANA project one of the main goals
was to create an MDD based tool chain for the
analysis and generation of ARINC 653 real-time
operating system (RTOS) configuration files from
high-level specifications captured as platform
independent models. However, transforming these
high-level models into ARINC 653 RTOS-specific
configuration artifacts is a complex task, which needs
to bridge a large abstraction gap by integrating
various tools. Moreover, critical design decisions are
also made during this mapping process. For this
reason, we used intermediate domain specific models
to subdivide the process into well-defined steps. The
overview of the model architecture is depicted in
Figure 2

Platform Independent Models:

In our approach the aim of the high-level
Platform Independent Model (PIM) is to capture the
high-level architectural view of the system along with
the definition of the underlying implementation
platform, while the Platform Specific Model (PSM)
focuses on the communication details and service
descriptions. All our models are defined as separate
EMF models.

In order to support already existing modeling
tools and languages (e.g., Matlab Simulink model,
SysML, etc.) we use a common architecture
description language called Platform Independent
Architecture Description Language (PIADL) for the
description of architectural details by extracting
relevant information from common off-the-shelf
modeling tools. As for capturing the underlying
platform (in our case ARINC 653) we use a Platform
Description model (PD) capable of describing
common resource elements. Functional requirements
are also incorporated into the PIADL along with the
Platform Description.

• PIADL aims to provide a platform
independent architectural-level description
of event-based and time-triggered
embedded systems using message
communication between applications.

• The Platform Description (model)
describes the resource building blocks,
which are available to build a system. This
mainly includes ARINC 653 based
elements such as modules, partitions,
communication channels, etc.

• In the context of the DIANA project we
supported MATLAB Simulink as a source
COTS language.

Figure 2: Modeling Architecture of the DIANA

approach

Platform Specific Models

PSMs are encapsulated in the so-called
Integrated System Model that contains all relevant
low-level details of the modeled system. Essentially,
it is based on ARINC 653 and consists of the
following sub-documents:

• The Interface Control Document (ICD) is
used to describe data structures and low-

level data representation of systems and
interfaces to ease integration of the
described element with other parts of the
system. It supports both high-level
(logical) and low-level (physical)
descriptions and was designed to be
compatible with the ARINC 653 and
ARINC 825 data and application interface
descriptions. Its descriptors are simple
XML files containing the serialized form
of the model describing the defined data
structures.

• The ARINC 653 System Architecture
model describes the relations among all
elements related to the system. More
precisely the model focuses on the (i)
details of the communication channels
between applications, partitions and
modules, and (iii) the detailed allocation of
the applications to partitions.

In order to support traceability, a trace element
is saved in the Trace documents for all model
elements of the PSM created during the mapping
process. Such an element saves all PIM model
segments that were used for the creation of a PSM
model element.

Target Platforms

During the DIANA project, two OS target
platforms were used: Wind River’s VxWorks 653
real-time operating system and GMV’s ARINC 653

simulator SIMA running on Linux [18]. The
following sections introduce these platforms briefly
and describe peculiarities of their configuration tool
chains.

Wind River VxWorks 653 RTOS

VxWorks 653 is Wind River’s platform for
safety-critical applications certifiable according to
DO-178B [19]. It is an IMA operating system with
proven compliance to ARINC 653 [20][21].

VxWorks 653 implements IMA by means of
virtualization technology [6]. There is a hypervisor
monitoring and controling a set of guests. Each guest
uses its own local executive, the Partition Operating
System (POS). Several types of POS are supported
by the platform, such as the ARINC 653 APEX, the
classic VxWorks RTOS or a general purpose OS like
Linux. Note that there is only one code instance per
POS physically present in the system that is linked to
the virtual address space of the partitions that actually
use this particular POS.

The hypervisor is called the Module Operating
System (MOS). It implements time- and space
partitioning, the ARINC 653 inter-partition
communication channels and the Health-Monitoring
system. The MOS is the only component that runs in
privileged mode. Guest systems run in user space and
are not allowed to execute privileged instructions that
may impact the proper function of the system.

Figure 3 (based on [6]) illustrates the
architecture:

Figure 3: VxWorks 653 Architecture

Note that the components of the system are not
linked together to one image; instead individual
binaries are created for the MOS, for the POSes and
for the applications. The boot loader is responsible to
locate the different components on the boot medium
and to load them into memory according to a
configuration derived from system configurations.

The configuration the system integrator has to
provide in order to link, load and execute the system
follows the VxWorks component structure [22].
There is a configuration file for the MOS that defines
fundamental architecture-related settings, such as
processor frequency, page size and virtual and
physical memory; there are configuration files for the
POSes, defining their memory layout and how they
are loaded into memory; there are configuration files
for the applications, defining memory sizes and ports;
there are Health Monitor tables that define the health
monitoring on partition and module level; there is,
finally, a configuration for the module bringing the
single configuration files together and adding time
partitioning-related information.

This configuration is different from the
configuration defined by supplement 2 of ARINC
653. However, the next supplement will present a
new approach: The standard will define a set of data
types that must be used for an ARINC 653-compliant
configuration, but will not impose a schema that
describes how the elements must be related. The
schema is left to implementations.

This approach of the ARINC 653 subcommittee
is just a consequence of the fact that today’s
operating systems do not comply with the standard
schema. Configuration is tightly coupled with the OS
architecture and, as such, is difficult to standardize.
For the task of generating vendor-independent valid
configurations, this is probably not good news. Tools
are needed that deal with the heterogeneity of
configurations.

GMV SIMA simulator
Simulated Integrated Modular Avionics (SIMA)

is an execution environment, providing the ARINC
653 Application Programming Interface (API) and
robust partitioning to operating systems that do not
support these features by themselves [7]. SIMA is
designed to run on all POSIX-compliant OSes and

optimised for the Native POSIX Thread Library
(NPTL), available on Linux since kernel version 2.6.

In SIMA, ARINC 653 partitions are mapped to
POSIX processes, and ARINC 653 processes are
mapped to POSIX threads. Each SIMA application is,
hence, linked to a single POSIX program, containing
user code and data, the APEX code and data and,
finally, the platform execution environment, i.e. the
NPTL for Linux.

The Module Operating System (MOS),
controlling the different POSIX processes, belonging
to the same simulated module, is likewise linked to
one POSIX process. The following picture illustrates
this design:

Figure 4: SIMA Architecture

The APEX services are implemented by a static
library, called POS. The POS implements the APEX
process scheduler on top of the POSIX FIFO
scheduler (sched_fifo). POSIX features are
encapsulated within a portability layer; this way main
parts of the APEX code do not rely directly on
POSIX, but on scheduling policies implemented by
the POS itself. The advantage of this approach is
enhanced portability - there is even an
implementation of the SIMA POS, running on bare
hardware - and the fact that scheduler features that
introduce subtle differences between different POSIX
implementations are handled in the portability layer
and hidden from the APEX implementation.

The MOS implements the APEX partition
scheduler. To be able to suspend and resume
partitions, commands are exchanged with the POS in
the partitions using signals and shared memory
segments. Obviously, this approach does not answer
safety and security threats, caused by random errors
in the partitioned code. The POS has to respond

correctly to given commands which may not be true
in the case where faulty or malicious application code
corrupts the state of the POS. In fact, the MOS does
only simulate the behaviour of an ARINC 653
compliant OS on top of non-safety aware systems
like standard Linux.

 Since SIMA main purpose is simulation, it aims
at full conformity with the standard. The SIMA
configuration is therefore strictly compliant to the
schema defined in today’s ARINC 653 part 1 and 2.
Additional information that is needed by the system
is added by means of a separate configuration file.
This file defines the mapping of certain elements of
the ARINC 653 configuration to the Linux OS;
APEX ports, for instance, can be mapped to UDP
ports.

Case Study: Air Conditioning

In order to introduce our approach, let us assume
a generic air conditioning system installed on an
airplane.

Figure 5: Overview of the Air Conditioning Case

Study

Its task is to regulate the temperature and
pressure in the aircraft. This is done in the following

way. The air conditioning pack is regulated by the
pack controller to supply the mixing unit with a
sufficient flow of cool fresh air. This air is supplied
to arbitrary number of zones (in Figure 5 we depicted
two zones Aft. and Forward). In order to regulate the
temperature of this airflow, the zone controller
regulates the amount of hot air added to the flow of
cool air, which is set on the air conditioning panel
and monitored on the system display. Additionally, as
air-conditioning is a critical task all systems have a
redundant equivalent for better reliability.

An overview of the air conditioning system is
depicted in Figure 5. Throughout the paper we will
use this case study as our running example. It is a
simplified version of the NLR demonstrator in the
DIANA project.

Steps of the PIM-PSM Mapping

Process

In order to introduce our PIM-PSM mapping
concept we first, highlight the steps of a general PIM-
PSM mapping process, then go into details about our
concrete implementation.

A general PIM-PSM Mapping Process for

Safety Critical Systems

A general PIM-PSM mapping process, in the
safety-critical system design domain, consist at least
the following steps (see in Figure 6):

1. Define / Derive the platform-independent
system model (PIM). The architecture-level
integrated system design starts by specifying a set of
applications attributed with properties extracted from
the system requirements (functional and non-
functional) and high-level initial system models
captured in SysML [2], AADL [3], etc.. These
properties are captured in the PIM model.

2. Define / Derive the Platform Description
Model (PD). The PD model describes all the details
(CPU, latency, bandwidth, etc) of the underlying
hardware platform including cabinet specification
and hardware resource descriptions

3. Define / Derive Platform Interface (PI). This
model describes the high-level middleware services
offered by the underlying platform.

4. Extract design constraints (performance,
dependability, security, etc.). The PIM and PD
models should also include design constraints,
which have to be satisfied by valid PSM models
derived as a result of a PIM-PSM mapping. These
constraints are extracted from the functional and non-
functional System requirements (e.g., modular
redundancy).

Figure 6: A Generic Mapping Process

5. Define variability points / design choices. As
there is more than one possible mapping of a PIM to
a target PSM, the PIM-PSM mapping should offer
variability points to explicitly capture design
choices. These variability points can be subject to
future optimization steps.

6. Resource allocation. As the core phase, the
system architect assigns application types to

resources (called resource allocation), which
provide general rules / guidelines for the PIM-PSM
mapping. From these high-level guidelines, the actual
mapping instances (i.e. mapping of application
instances to actual resources) could be partially

automated to obtain the PSM model. A valid PIM-
PSM mapping should fulfill all design constraints
(e.g. should not exceed HW limits like available
memory).

7. Scheduling and Optimization. In addition,
further scheduling and optimization steps can be
carried out after resource allocation, which is out of
scope for the current paper. For further reference see
in FRESCOR [23]

8. Evaluate the quality of the mapping. The
quality of the mapping can be evaluated against all
functional and non-functional requirements, and
certification means.

The DIANA Approach

We support the system architect by subdividing
the PIM-PSM mapping process into well-defined
design steps and by the precise definition of the
interactions and interfaces at each step. Individual
design steps are then organized into a complex
workflow [24], which is closely aligned with the
designated development process followed by the
system builder (system integrator, function provider
and platform provider.). In order to assist the system
architect, our framework guarantees that a certain
design step can only be started if all prerequisite steps
are successfully completed. Our framework is easily
customizable to incorporate additional design steps, if
required.

The high level workflow of the PIM-PSM
mapping process as used in the DIANA project is
depicted in Figure 7. The process consists of 22 steps
organized into five groups.

To illustrate some technicalities of our approach
we use the simplified Simulink model (depicted in
Figure 8) as the starting PIM model of the air
conditioning case study.

Application Group

The group consists of steps to define the
resource requirements of the applications and
partitions used in a module and create a viable
mapping that is compatible with the available
resources and dependability requirements.

Figure 7: Workflow of the DIANA PIM-PSM mapping process

First, the PIADL and the PD models are
imported into the framework. This step also resolves
certain dependability attributes defined in the PIADL
like redundancy degree of applications and messages
(e.g., triple or double modular redundancy etc.).

As the platform description does not include all
information needed for the allocation process and
configuration generation, the system architect needs
to (i) define the memory requirements and
compatibility mapping of the applications and (ii)
new partitions or modify existing ones and define
their memory requirements.

Figure 8: PIM model of the Air Conditioning Case

Study
1

To demonstrate how these steps are captured on
model level, Figure 9 illustrates the low level model
elements created for a partition (partitions creation
step). Model Elements in yellow and dashed lines are
newly created, while elements in green (and solid
references) are already existing in the model. The
tags <<Integration>> and <<PD>> represent the
package of the model element. Partitions are
defined/stored in the Platform Description model
with separate model elements describing their
corresponding memory requirements capturing the
size, access (type) and type attributes. PSMRoot is
the root element of the integration model and it holds
references between the elements of the PIADL, PD
and the PSM models.

1 © 2010 NLR

For easier readability (i) attribute types are
excluded from the figure and (ii) references and
association are depicted by simple lines.

As the final step in the group, all allocations of
applications-to-partitions conform to the defined
constraints and requirements are computed. This way
the system architect can select a valid allocation and
(if required) can take into account additional non-
functional requirements.

Figure 9: Partition Creation

The allocation problem is solved as a constraint
satisfaction problem.

Communication Group
The group involves steps in the PIM-PSM

Mapping editor that carry out the allocation of inter-
partition communication channels and the
specification of ports residing on each end of these
channels.

The allocation is based on the architecture
defined in the PIADL model (derived from a
Simulink model), the selected application to partition
mapping and the redundancy requirements of the
applications. Based on this information the allocation
algorithm creates the required ARINC 653 ports and
connects them.

Additionally, the system architect needs to
define the ARINC 653 specific parts like the queue
length and the VxWorks specific queuing protocol to
be able to generate the configuration files.

Figure 10 depicts a simple example how the
allocated channels are visualised. In this case Data
Monitoring application allocated over the I/O
Processing partitions uses the Temp. channel to send
the temperature value to the Refresh GUI application.

Figure 10: Allocated Communication Channels

Health Monitoring Group
The group consists of steps to define the Health

Monitoring tables for module, partition and
application level along with the different error
entities and actions to be carried out.

All these definitions are done by the system
architect by hand. The framework gives support for
early validation (e.g., naming conventions, required
action definitions etc.) based on the specification of
the different tables and the system-specific
requirements for health monitoring tables..

The defined tables are saved in the Platform
Description model with the appropriate references
from the PSMRoot of the Integration model.

ICD Group
In this group steps related to the description of

interfaces and messages provided and required by
applications. These are user driven mapping steps,
where PIM types and messages, are refined with
platform specific information like encoding, default
value, etc.

Figure 11 describes how the Temp PIM type is
refined into the Int1_100 PSM representing an
integer value with a domain of 1-100. The Int1_100
type is based on the predefined 16 bit unsigned
integer type from the ICD with additional constraints
over its domain. Based on these PSM types, complex
messages are defined following a similar way, where
the ICD provides the basic structures like arrays,
buffer, etc.

Figure 11: Definition of the Temp value in ICD

Artifact Generation Group
Finally, when the prerequisite steps for a certain

code generator is finished the actual textual
representation is synthesized by separate dedicated
code generators.

In our case the ICD generator simple serializes
the model into its XML representation using the built
in support of the Eclipse Modeling Framework. As
for the other artifacts we hand-coded the generators
in java to derive the required formats defined by the
two platforms.

The communication architecture, depicted in
Figure 8, is mapped to ARINC 653 ports through the
defined mapping process and then automatically
generated both the ARINC 653 and the VxWorks 653
specific module and ApplicationDescription XML
configuration tables. A fragment of the generated
configuration tables capturing the communication
channel depicted in Figure 10 is captured in Figure
12.

Figure 12: Example ARINC 653 Module and

VxWorks Application Description configuration

Traceability
Additionally, as an essential requirement of DO-

178B certification, continuous traceability has been
carried out from the high-level requirements to the
deployed applications (depicted in Figure 13).

Figure 13: Traceability between models and

configuration artifacts

In case of the design phase we used (i) inter-
model traceability based on the Integration Model
that keeps track of all manipulations done during the
PIM-PSM mapping process and (ii) model-to-
configuration traceability with XMI files connecting
generated configuration elements to their
corresponding model entities. This allowed end-to-
end traceability from the PIADL model to the
generated configuration tables. It is important to
mention that the current implementation requires an
explicit definition of traceability elements between
the various models. However, currently we are
investigating special live model transformations [25]
to give support for automatic generation of
traceability elements without explicit definition.

Verification and Validation Support

Keeping the design and verification aspects
tightly synchronized, enables early validation as close
as possible to the corresponding model/code
development time, thus providing better feedback and
error detection. To support early validation of
modeling artifacts during our development process
we used contracts to guard each steps.

Contracts

During a development process certain steps
require external COTS tools (e.g., Matlab, SAL, etc.)
or user interaction to perform their task. In order to
guarantee that the result of these steps is acceptable
and the process can continue, the definition of
contracts [26] is a well-known paradigm.

The idea is to guard both the input and output of
a step by specific constraints. Thus, a contract is
composed of a precondition and a postcondition. In
our interpretation a precondition defines constraints
that need to be fulfilled by the input of the step in
order to allow its execution, while the postcondition
guarantees that the process can continue only if its
constraints are satisfied by the output.

In our approach we used graph patterns (GP)
[27] to capture such contracts. GPs are frequently
considered as the atomic units of model
transformations. They represent conditions (or
constraints) that have to be satisfied by a part of the
underlying model. Based on these contracts we
investigated two promising approaches to support
early validation and verification.

On-The-Fly Evaluation of Contracts
One of the main advantage using contracts to

specify constraints on the input and output (model) of
each step in the development process is that it allows
fine grain (step level) validation of model changes
throughout the whole workflow. However, graph
patterns can express complex model constraints
containing cycles, attribute conditions, transitive
closures and recursive calls. Additionally, as these
queries are executed rather frequently in interactive
modeling applications, they have a significant impact
on the runtime performance of the tool, and also on
the end user experience.

In our framework to provide on-the-fly
evaluation of constraints, we applied EMF-IncQuery,
a state-of-the-art pattern matcher engine over EMF
models based on incrementally maintained caches,
resulting in (almost) instantaneous contract
evaluation. More details are available in [28].

Without going into details the simplified
example contract depicted in Figure 14 captures the
condition that, “if there exist an Application with an
ApplicationInstance (as the precondition), then after
the allocation step there cannot be
ApplicationInstances that are not allocated to a

Partition (as the postcondition)”. For more details
see [24].

Figure 14: Contract for Application Allocation

Validation of end-to-end traceability
One key question in end-to-end traceability is to

demonstrate that any target element can be traced
back to its corresponding requirement. Showing this
ability in a model driven development process can be
problematic as separate part of models can be parts of
the traceability (e.g., in our case the integration
model is also part of the traceability) resulting in
complex trace paths.

To solve this issue, our idea is to validate the
existence of such trace paths through contracts and
show that complete traceability is present in the
whole mapping process from the PIADL down to the
generated artifacts. The idea is based on the
following assumptions: (i) defining the traceability
relation, as a contract, between the input and output
of a step is relatively simple, (ii) if a step is
completed in the process and its contracts are
validated then their postconditions can be treated as
valid statements over the model, and finally, (iii)
using the defined workflow of the development
process all steps required for the generation of a
configuration element can be followed back to its
starting point (e.g., import step, creation step, etc.)
allowing an induction based reasoning over the
contracts of the traversed steps to show the existence
of a valid traceability path.. However, it only proves
the existence and does not provide the traceability
matrix; future work is required to automatically
generate it.

Related Work

There are numerous approaches in the literature
introducing various model based techniques for the
development of embedded system. Here we give a
brief summary of some current EU research projects

with significant relevance to design and verification
of embedded systems involving model based
techniques.

INDEXSY [15] aims to realize industrial
implementations of cross-domain architectural
concepts [17] developed in the GENESYS [29]
project and give tool support based on MDD for its
three target domains: automotive, aerospace and
railway.

COCONUT [30] focuses on the definition of a
formal framework [31] based on a tight integration of
design and verification through refinement steps of
an embedded platform design flow, from
specifications to logic synthesis and software
compilation.

TopCased [32] is an open source tool-kit (over
the Eclipse platform) for the design, development and
deployment of safety critical system using novel
MDD techniques and support for languages like
AADL and SysML.

CHESS [33] seeks to improve Model Driven
Development practices and technologies to (i) better
address safety, reliability and robustness
functionalities as required by the aeronautical and
railway industry and (ii) develop techniques to
guarantee the correctness of assembled component
embedded systems by reusing certification artifacts
of the components used for the complete system.

FRESCOR [23] aimed to integrate advanced
flexible scheduling techniques directly into an
embedded systems design methodology, covering all
the levels involved in the implementation, from the
OS primitives, through the middleware, up to the
application level using contracts to define the
application requirements.

CHARTER [34] focuses on cost-reduction of
certification of critical embedded systems by
integrating real-time Java, model-driven
development, rule-based compilation, and formal
verification into a novel development process called
Quality-Embedded Development (QED).

Conclusion and Future Work

Our approach demonstrated that Model-Driven
Engineering can be effectively applied for the
systematic development of ARINC 653 configuration
tables. Additionally, we demonstrated the use of

model based validation techniques such as (i)
complete end-to-end traceability from the high-level
models down to the generated artifacts and (ii) model
based on-the-fly validation of design contracts during
the development process.

However, during the evaluation of the proposed
technologies we have encountered gaps and
shortcoming that point to future work and new
research directions:

One key issue for the success of MDE in the
safety-critical domain is the certification of model
transformation. MT serves as the backbone of almost
all model based technologies from code and model
synthesis through model validation techniques to
simulation. Up to date many work has been done
regarding the V&V of transformations [35], however,
certification issues were rarely covered in recent
publications. Additionally, the complexity of tools
may impose high qualification costs on tool vendors

As development of safety-critical system usually
requires large number of developers the need for
advanced collaborative support for the definition
models like versioning, distributed development,
access control etc. is becoming a key question
[36][35].

Finally, MDE promises an easier way of
integrating various tools based on a common
integrated model (or model bus [32]) that allows their
input and output models of the various tools to be
treated in a common way. Additionally, it can give
support for model based traceability a common
requirement by various certification authorities.

References

[1] Airlines electronic engineering committee
(AEEC), 2006, avionics application software
standard interface - ARINC specification 653 - part 1
(supplement 2 - required services), ARINC Inc.

[2] The Object Management Group: System
Modeling language, http://www.sysml.org/.

[3] International Society for Automotive Engineers,
Architecture Analysis and Design Language,
http://www.aadl.info.

[4] Clarck, L., T. Ruthruff, B.. Hogan, , Development
of Lockheed Martin's, F16 Modular Mission
Computer Application Software using MDA

http://www.omg.org/mda/mda_files/LockheedMartin.
pdf.

[5] RTCA/EUROCAE, 1992, Software
Considerations in Airborne Systems and Equipment
Certification.

[6] Wind River, 2007, VxWorks 653 for Integrated
Modular Avionics, Wind River White Paper,
Alameda.

[7] GMV, 2009, SIMA Overview, GMV White
Paper, Lisbon.

[8] The DIANA Project, Distributed, equipment
Independent environment for Advanced avioNic
Application, http://dianaproject.com.

[9] AUTOSAR Consortium: The AUTOSAR
Standard, http://www.autosar.org/.

[10] The Object Management Group, Meta Object
Facility (MOF) core specification version 2.0
http://www.omg.org/docs/formal/06-01-01.pdf.

[11] Eclipse Foundation, Eclipse Modeling
Framework: http://www.eclipse.org/emf.

[12] ATLAS Transformation Language,
http://www.eclipse.org/atl/.

[13] VIATRA2:-VIsual Automated model
TRAnsformations, http://wiki.eclipse.org/VIATRA2.

[14] GReAT: Graph Rewrite And Transformation
http://www.escherinstitute.org/Plone/tools/suites/mic/
great.

[15] The INDEXYS Project, INDustrial EXploitation
of the genesYS cross-domain. architecture,
http://www.indexys.eu/.

[16] Miller, P. Steven., 2009, Bridging the Gap
Between Model-Based Development and Model
Checking, 2009, In Proc. of 15th International
Conference on Tools and Algorithms for the
Construction and Analysis of Systems, York, UK,
Springer, pp 443-453.

[17] Obermaisser, R., H. Kopetz (Eds.), 2009,
GENESYS: A Candidate for an ARTEMIS Cross-
Domain Reference Architecture for Embedded
Systems; Germany, SVH

[18] Schoofs, T:, 2010, The Use of SIMA in the
DIANA Project. A Success Story, GMV White
Paper, Lisbon.

[19] Parkinson, Paul, Larry Kinnan, 2006, Safety
Critical Software Development for Integrated
Modular Avionics. Wind River White Paper,
Alameda.

[20] Felipe, Sérgio, 2007, ARINC 653 Validation
Test-Suite Execution on VxWorks 653 2.1, Report
Skysoft Portugal and Wind River, Lisbon.

[21] Schoofs, Tobias, 2009, ARINC 653 Validation
Test-Suite Execution on VxWorks 653 2.2, Report
GMV and Wind River, Lisbon.

[22] Wind River, 2007, Platform for Safety Critical
ARINC 653 - Configuration Reference 2.2, Wind
River Manual, Alameda.

[23] The FRESCOR project, Framework for Real-
time Embedded Systems based on COntRacts,
http://www.frescor.org/.

[24] Balogh, A., et al, 2010, Workflow-Driven Tool
Integration using Model Transformation, Graph
Transformations and Model-Driven Engineering,
LNCS 5765, Springer.

[25] Ráth, I., A. Ökrös, D. Varró, 2010,
Synchronization of abstract and concrete syntax in
domain-specific modeling languages, Software and
System Modeling, Spec. Issue on Traceability,
Springer.

[26] Meyer, Bertrand, 1992, Applying ”design by
contract”, Computer, IEEE, 25(10), pp. 40–51.

[27] Varró, D., A. Balogh: The model transformation
language of the VIATRA2 framework, 2007, Science
of Computer Programming 68(3), Elsevier, pp. 214–
234.

[28] Bergmann, G., et al., 2010, ,Incremental Model
Queries over EMF Models, In Proceeding of the 13th
International Conference on Model Driven
Engineering Languages and System, Oslo, Norway,
Springer.

[29] The GENESYS project, GENeric Embedded
SYStem Platform, http://www.genesys-platform.eu/.

[30] The COCONUT project, A COrrect-by-
CONstrUcTion Workbench for Design and
Verification of Embedded Systems,
http://www.coconut-project.eu.

[31] Bloem R., et al., 2010, RATSY - A new
Requirements Analysis Tool with Synthesis. Proc. of

Computer Aided Verification (CAV), Edinburgh,
Scotland, Springer, pp 425-429.

[32] TopCased, The Open Source Toolkit for Critical
Systems, http://www.topcased.org/.

[33] The CHESS project, Composition with
Guarantees for High-Integrity Embedded Software
Components Assembly, http://chess-
project.ning.com/.

[34] The CHARTER project, Critical and High
Assurance Requirements Transformed through
Engineering Rigour, http://charterproject.ning.com.

[35] Varró, Dániel, 2010, Towards Certifiable Model
Transformations: A Survey, Budapest University of
Technology and Economics, Department of
Measurement and Information Systems, Technical
report, Budapest.

[36] Bendix, L., Par E., 2009, Requirements for
Practical Model Merge, In Proceeding of the 12th
International Conference on Model Driven
Engineering Languages and System, Denver, USA,
Springer, pp. 167-180.

Acknowledgements

We would like to thank to Klaas Wiegmink,
from NLR, for his help with air conditioning case
study and Olivier Charrier, from WindRiver for his
support on VxWorks.

This work was mainly supported by the EC FP6
DIANA (AERO1-030985) European project,
however, the validation of traceability by contracts
research direction was also partially supported by the
Hungarian CERTIMOT (ERC_HU_09) project and
the Janos Bolyai Scholarship.

Email Addresses

Ákos Horváth: ahorvath@mit.bme.hu

Dániel Varró: varro@mit.bme.hu

Tobias Schoofs: tobias.schoofs@gmv.com

29th Digital Avionics Systems Conference

October 3-7, 2010

