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Abstract 

Model-driven development (MDD) has become 
a key technique in systems and software engineering, 
including the aeronautic domain. It facilitates on 
systematic use of models from a very early phase of 
the design process and through various model 
transformation steps (semi-)automatically generates 
source code and documentation. However, on one 
hand, the use of model-driven approaches for the 
development of configuration data is not as widely 
used as for source code synthesis. On the other hand, 
we believe that, particular systems that make heavy 
use of configuration tables like the ARINC 653 
standard can benefit from model-driven design by (i) 
automating error-prone configuration file editing and 
(ii) using model based validation for early error 
detection. 

In this paper, we will present the results of the 
European project DIANA that investigated the use of 
MDD in the context of Integrated Modular Avionics 
(IMA) and the ARINC 653 standard. In the scope of 
the project, a tool chain was implemented that 
generates ARINC 653 configuration tables from 
high-level architecture models. The tool chain was 
integrated with different target systems (VxWorks 
653, SIMA) and evaluated during case studies with 
real-world and real-sized avionics applications. 

Introduction 

The ARINC 653 standard [1] has taken a leading 
role within the aeronautical industry in the 
development of safety-critical systems based on the 
Integrated Modular Avionics (IMA) concept. One of 
the main promises of IMA is cost saving in reduced 
development, integration and verification and 
validation effort.  

In case of ARINC 653 compliant platforms 
many deployment and implementation details are 
defined in the configuration tables. Typically, these 
configurations are hand defined by the system 

architect with limited tool support that only ease (i) 
the manipulation of its XML representation, (ii) their 
validation to the ARINC 653 schema definition and 
some  consistency checks.  

Unfortunately, despite the inherent complexity 
of ARINC 653 configurations, current tools 
supporting configuration design offer very low-level 
support directly on the XML representation level. 
However, existing tools lack support for (1) capturing 
the development process for configurations, (2) 
validating design constraints for configurations on-
the-fly, (3) recording explicitly the critical design 
decisions made by the system architect, and (4) 
providing traceability between high-level 
requirements and the configuration tables, which 
require hand-crafted traceability lists. As a result, 
verification of configuration tables is a tedious 
activity. 

Model-driven development (MDD) has become 
a key technique in systems and software engineering. 
It facilitates on systematic use of models from a very 
early phase of the design process. Based on high-
level modeling standards (like UML , SysML [2] or 
AADL [3]), traditional MDD separates business and 
application logic from underlying platform 
technology by using platform independent models 
(PIM) to capture the system requirements, and 
platform specific models (PSM) to specify the target 
system on the implementation platforms (ADA, Java, 
C++). PSM may refer to models or to platform-
specific artifacts like source code and configuration 
elements; the latter are automatically generated from 
PIM and PSMs, respectively, using automatic model 
transformations. 

However, as MDD is attracting increasing 
attention in safety-critical system development [4], 
the original approach needs to be adapted to be in-
line with the rigid certification requirements (e.g., 
DO-178B [5]) imposed by authorities.  



In the paper, we present a framework for 
systematically designing standard ARINC 653 
configuration tables with additional support for 
configuring (i) the Wind River VxWorks 653 Safety 
Critical RTOS [6] and (ii) the GMV SIMA ARINC 
653 simulation platform [7]. Additionally, parallel to 
the development process our approach generates end-
to-end traceability information to support 
certification  Our toolkit is implemented in the 
Eclipse framework, and it is built upon the principles 
of Model-Driven Development (MDD). 

The framework was developed in the context of 
the DIANA [8] project financed by the European 
Commission through the Sixth Framework 
Programme in close collaboration with leading 
avionics experts and airframers including GMV, 
AleniaSia, Atego, Dassault, Embraer, NLR, 
THALES, and academic partners of TU Budapest 
and Karlsruhe Institute of Technology. 

Outline 

In order to introduce our approach we (i) outline 
the basics of model-driven development for safety 
critical system, (ii) presents our intermediate models 
and target platforms (iii) give a motivating air 
conditioning case study, (iv) introduce our PIM-PSM 
mapping approach, (v) highlight a contract based 
V&V approach and finally (vi) conclude the work. 

Model-Driven Development for Safety 

Critical Systems 

Models are prime artifacts of engineering. In 
system development, they have played an important 
role as a way to capture real world notions as well as 
abstract constructs. In fact, system architects have 
been using models and modeling techniques long 
before model-driven development emerged as a 
trend, e.g. in the form of entity-relationship diagrams, 
graph-like data structures, abstract syntax trees etc. 
However, the term Model-Driven Development 
(MDD) implies that models play a central role that 
encompasses the entire system development 
lifecycle, starting from requirement analysis, system 
design, implementation, to verification and even 
maintenance. 

Model-driven development aims to increase the 
efficiency and productivity of the software 

development process by introducing precise 
engineering practices based on formal modeling 
techniques. By this approach, design intelligence is 
applied to capture all relevant information in the form 
of abstract models. First, these models can be used 
for documentation purposes to store well-structured 
information about the system-under-design. 
Moreover, models can also be used for generative 
development, where target design artifacts (source 
code, configuration tables, test cases, textual 
documentation, etc.) is (semi-)automatically derived 
by tools. Finally, models can also be used for early 
validation, where important properties of the 
products (such as reliability, performance, 
robustness, security, complexity) can be evaluated 
before actual implementation begins. All of these 
techniques aim at reducing costs and risks. 

MDD emphasizes the clear distinction between 
Platform Independent Models (PIM) and Platform 
Specific Models (PSM), thus, software development 
in MDD is envisioned as a three-step process. 

First, the Platform Independent Model (PIM) 
is designed. The main purpose of this model is to 
capture the underlying business logic without specific 
implementation details and, this way, help portability 
to other target platforms (e.g., a prototyping 
platform, using Java, for instance; the final target 
platform, ARINC 653 for the aeronautical world or 
AUTOSAR [9] for the automobile domain based on 
ADA or C). 

The second step is to generate a Platform 

Specific Model (PSM), which contains additional 
models, and represents an implementation of the 
system under design which can run on the target 
platform. The transition between PIM and PSM 
(PIM-PSM mapping), should typically be facilitated 
using automated model transformation technology. 

Finally, software artifacts (e.g., configuration 
files, source code, documentation, etc.) are 

generated from the Platform Specific Model for the 
target platform. Again, code generation should be as 
extensive as possible, in order to minimize the 
amount of necessarily slow and error-prone manual 
coding. This, in turn, requires PSMs that are 
expressive enough, not only from a static, but also 
from a dynamic point of view of the system, to 
produce all of the application artifacts. 



Enabling technologies 
MDD relies on two key technologies that allow 

the definition and manipulation of models called, 
metamodeling and model transformation, 
respectively. 

Metamodeling is a methodology for the 
definition of modeling languages. A metamodel 
specifies the syntax (structure) of a language. 
Metamodels are expressed using a metamodeling 
language that itself is a modeling language. The 
metamodel can also be interpreted as the object-
oriented data model of the language under design. 
There are several different metamodeling 
environments, most widely used are the Meta Object 
Facility (MOF) [10] from OMG and the Eclipse 
Modeling Framework (EMF) [11] (a subset of MOF).  

Model transformations (MT) are the backbone 
of the MDD concept. Primarily, model 
transformations are responsible for the PIM-to-PSM 
transformations. However, MTs can also define views 
on models and synchronization between different 
models (like UML class diagrams and relational 
database schemas). Moreover, engineering models 
are frequently mapped into mathematical domains by 
model transformations to carry out model analysis as 
early model based verification. Well-known 
approaches for high-level declarative specification of 
model transformations are the ATLAS Transformation 
Language (ATL) [12], the VIATRA2 (VIsual 
Automated model TRAnsformations) system [13] 
and the GReAT (Graph Rewrite And 
Transformation) framework [14]. 

Challenges in MDD for Safety Critical Systems 

In order to support the specific needs of the 
safety-critical development processes, we followed 
the guidelines introduced in the EU-FP7 INDEXYS 
[15] project for the definition of a MDD means for 
embedded systems. Based on these guidelines the 
main challenges of MDD for safety-critical systems 
are the following (depicted in Figure 1.): 

V&V activities need to be tightly integrated 

[16] into the development process to provide early 
feedback on requirements, specification, design and 
implementation. This requires a continuous 
verification activity from early specification through 
design to development. On top of that it has to be in-

line with rigid certification requirements (e.g., DO-
178B) imposed by authorities like FAA or EASA. 

The PIM-PSM mapping process [17] needs to 
support both automatic and user-driven design steps 
as many critical design decisions are taken during the 
mapping process and cannot be fully automated. 
Furthermore, these decisions need to be recorded for 
traceability related certification requirements. 

PSM needs to support the different viewpoints 

of the system [17] with a systematic separation of 
system level aspects (e.g., functionality, 
dependability, security) and a strong separation 
between architectural and behavioral aspects. This 
allows to use appropriate COTS or proprietary tools 
for the generation of textual artifacts. 

Finally, PSM needs to support synthesis not 
only for source code but also system configuration, 
certification and documentation artifacts. 

 

Figure 1: MDD for Safety Critical System Development 



 

Modeling Architecture of the DIANA 

approach 

Within the DIANA project one of the main goals 
was to create an MDD based tool chain for the 
analysis and generation of ARINC 653 real-time 
operating system (RTOS) configuration files from 
high-level specifications captured as platform 
independent models. However, transforming these 
high-level models into ARINC 653 RTOS-specific 
configuration artifacts is a complex task, which needs 
to bridge a large abstraction gap by integrating 
various tools. Moreover, critical design decisions are 
also made during this mapping process. For this 
reason, we used intermediate domain specific models 
to subdivide the process into well-defined steps. The 
overview of the model architecture is depicted in 
Figure 2 

Platform Independent Models: 

In our approach the aim of the high-level 
Platform Independent Model (PIM) is to capture the 
high-level architectural view of the system along with 
the definition of the underlying implementation 
platform, while the Platform Specific Model (PSM) 
focuses on the communication details and service 
descriptions. All our models are defined as separate 
EMF models. 

In order to support already existing modeling 
tools and languages (e.g., Matlab Simulink model, 
SysML, etc.) we use a common architecture 
description language called Platform Independent 
Architecture Description Language (PIADL) for the 
description of architectural details by extracting 
relevant information from common off-the-shelf 
modeling tools. As for capturing the underlying 
platform (in our case ARINC 653) we use a Platform 
Description model (PD) capable of describing 
common resource elements. Functional requirements 
are also incorporated into the PIADL along with the 
Platform Description. 

• PIADL aims to provide a platform 
independent architectural-level description 
of event-based and time-triggered 
embedded systems using message 
communication between applications.  

• The Platform Description (model) 
describes the resource building blocks, 
which are available to build a system. This 
mainly includes ARINC 653 based 
elements such as modules, partitions, 
communication channels, etc.  

• In the context of the DIANA project we 
supported MATLAB Simulink as a source 
COTS language. 

 

Figure 2: Modeling Architecture of the DIANA 

approach 

Platform Specific Models 

PSMs are encapsulated in the so-called 
Integrated System Model that contains all relevant 
low-level details of the modeled system. Essentially, 
it is based on ARINC 653 and consists of the 
following sub-documents:  

• The Interface Control Document (ICD) is 
used to describe data structures and low-



level data representation of systems and 
interfaces to ease integration of the 
described element with other parts of the 
system. It supports both high-level 
(logical) and low-level (physical) 
descriptions and was designed to be 
compatible with the ARINC 653 and 
ARINC 825 data and application interface 
descriptions. Its descriptors are simple 
XML files containing the serialized form 
of the model describing the defined data 
structures. 

• The ARINC 653 System Architecture 
model describes the relations among all 
elements related to the system. More 
precisely the model focuses on the (i) 
details of the communication channels 
between applications, partitions and 
modules, and (iii) the detailed allocation of 
the applications to partitions. 

In order to support traceability, a trace element 
is saved in the Trace documents for all model 
elements of the PSM created during the mapping 
process. Such an element saves all PIM model 
segments that were used for the creation of a PSM 
model element. 

Target Platforms 

During the DIANA project, two OS target 
platforms were used: Wind River’s VxWorks 653 
real-time operating system and GMV’s ARINC 653 

simulator SIMA running on Linux [18]. The 
following sections introduce these platforms briefly 
and describe peculiarities of their configuration tool 
chains. 

Wind River VxWorks 653 RTOS 

VxWorks 653 is Wind River’s platform for 
safety-critical applications certifiable according to 
DO-178B [19]. It is an IMA operating system with 
proven compliance to ARINC 653 [20][21]. 

VxWorks 653 implements IMA by means of 
virtualization technology [6]. There is a hypervisor 
monitoring and controling a set of guests. Each guest 
uses its own local executive, the Partition Operating 
System (POS). Several types of POS are supported 
by the platform, such as the ARINC 653 APEX, the 
classic VxWorks RTOS or a general purpose OS like 
Linux. Note that there is only one code instance per 
POS physically present in the system that is linked to 
the virtual address space of the partitions that actually 
use this particular POS. 

The hypervisor is called the Module Operating 
System (MOS). It implements time- and space 
partitioning, the ARINC 653 inter-partition 
communication channels and the Health-Monitoring 
system. The MOS is the only component that runs in 
privileged mode. Guest systems run in user space and 
are not allowed to execute privileged instructions that 
may impact the proper function of the system. 

Figure 3 (based on [6]) illustrates the 
architecture:

 

 

Figure 3: VxWorks 653 Architecture 



 

Note that the components of the system are not 
linked together to one image; instead individual 
binaries are created for the MOS, for the POSes and 
for the applications. The boot loader is responsible to 
locate the different components on the boot medium 
and to load them into memory according to a 
configuration derived from system configurations. 

The configuration the system integrator has to 
provide in order to link, load and execute the system 
follows the VxWorks component structure [22]. 
There is a configuration file for the MOS that defines 
fundamental architecture-related settings, such as 
processor frequency, page size and virtual and 
physical memory; there are configuration files for the 
POSes, defining their memory layout and how they 
are loaded into memory; there are configuration files 
for the applications, defining memory sizes and ports; 
there are Health Monitor tables that define the health 
monitoring on partition and module level; there is, 
finally, a configuration for the module bringing the 
single configuration files together and adding time 
partitioning-related information.  

This configuration is different from the 
configuration defined by supplement 2 of ARINC 
653. However, the next supplement will present a 
new approach: The standard will define a set of data 
types that must be used for an ARINC 653-compliant 
configuration, but will not impose a schema that 
describes how the elements must be related. The 
schema is left to implementations. 

This approach of the ARINC 653 subcommittee 
is just a consequence of the fact that today’s 
operating systems do not comply with the standard 
schema. Configuration is tightly coupled with the OS 
architecture and, as such, is difficult to standardize. 
For the task of generating vendor-independent valid 
configurations, this is probably not good news. Tools 
are needed that deal with the heterogeneity of 
configurations.  

GMV SIMA simulator 
Simulated Integrated Modular Avionics (SIMA) 

is an execution environment, providing the ARINC 
653 Application Programming Interface (API) and 
robust partitioning to operating systems that do not 
support these features by themselves [7]. SIMA is 
designed to run on all POSIX-compliant OSes and 

optimised for the Native POSIX Thread Library 
(NPTL), available on Linux since kernel version 2.6.  

In SIMA, ARINC 653 partitions are mapped to 
POSIX processes, and ARINC 653 processes are 
mapped to POSIX threads. Each SIMA application is, 
hence, linked to a single POSIX program, containing 
user code and data, the APEX code and data and, 
finally, the platform execution environment, i.e. the 
NPTL for Linux.  

The Module Operating System (MOS), 
controlling the different POSIX processes, belonging 
to the same simulated module, is likewise linked to 
one POSIX process. The following picture illustrates 
this design: 

 

Figure 4: SIMA Architecture 

The APEX services are implemented by a static 
library, called POS. The POS implements the APEX 
process scheduler on top of the POSIX FIFO 
scheduler (sched_fifo). POSIX features are 
encapsulated within a portability layer; this way main 
parts of the APEX code do not rely directly on 
POSIX, but on scheduling policies implemented by 
the POS itself. The advantage of this approach is 
enhanced portability - there is even an 
implementation of the SIMA POS, running on bare 
hardware - and the fact that scheduler features that 
introduce subtle differences between different POSIX 
implementations are handled in the portability layer 
and hidden from the APEX implementation. 

The MOS implements the APEX partition 
scheduler. To be able to suspend and resume 
partitions, commands are exchanged with the POS in 
the partitions using signals and shared memory 
segments. Obviously, this approach does not answer 
safety and security threats, caused by random errors 
in the partitioned code. The POS has to respond 



correctly to given commands which may not be true 
in the case where faulty or malicious application code 
corrupts the state of the POS. In fact, the MOS does 
only simulate the behaviour of an ARINC 653 
compliant OS on top of non-safety aware systems 
like standard Linux. 

 Since SIMA main purpose is simulation, it aims 
at full conformity with the standard. The SIMA 
configuration is therefore strictly compliant to the 
schema defined in today’s ARINC 653 part 1 and 2. 
Additional information that is needed by the system 
is added by means of a separate configuration file. 
This file defines the mapping of certain elements of 
the ARINC 653 configuration to the Linux OS; 
APEX ports, for instance, can be mapped to UDP 
ports. 

Case Study: Air Conditioning 

In order to introduce our approach, let us assume 
a generic air conditioning system installed on an 
airplane.  

  

Figure 5: Overview of the Air Conditioning Case 

Study 

Its task is to regulate the temperature and 
pressure in the aircraft. This is done in the following 

way. The air conditioning pack is regulated by the 
pack controller to supply the mixing unit with a 
sufficient flow of cool fresh air. This air is supplied 
to arbitrary number of zones (in Figure 5 we depicted 
two zones Aft. and Forward). In order to regulate the 
temperature of this airflow, the zone controller 
regulates the amount of hot air added to the flow of 
cool air, which is set on the air conditioning panel 
and monitored on the system display. Additionally, as 
air-conditioning is a critical task all systems have a 
redundant equivalent for better reliability. 

An overview of the air conditioning system is 
depicted in Figure 5. Throughout the paper we will 
use this case study as our running example. It is a 
simplified version of the NLR demonstrator in the 
DIANA project. 

Steps of the PIM-PSM Mapping 

Process 

In order to introduce our PIM-PSM mapping 
concept we first, highlight the steps of a general PIM-
PSM mapping process, then go into details about our 
concrete implementation. 

A general PIM-PSM Mapping Process for 

Safety Critical Systems 

A general PIM-PSM mapping process, in the 
safety-critical system design domain, consist at least 
the following steps (see in Figure 6 ): 

1. Define / Derive the platform-independent 
system model (PIM). The architecture-level 
integrated system design starts by specifying a set of 
applications attributed with properties extracted from 
the system requirements (functional and non-
functional) and high-level initial system models 
captured in SysML [2], AADL [3], etc.. These 
properties are captured in the PIM model.  

2. Define / Derive the Platform Description 
Model (PD). The PD model describes all the details 
(CPU, latency, bandwidth, etc) of the underlying 
hardware platform including cabinet specification 
and hardware resource descriptions 

3. Define / Derive Platform Interface (PI). This 
model describes the high-level middleware services 
offered by the underlying platform.  



4. Extract design constraints (performance, 
dependability, security, etc.). The PIM and PD 
models should also include design constraints, 
which have to be satisfied by valid PSM models 
derived as a result of a PIM-PSM mapping. These 
constraints are extracted from the functional and non-
functional System requirements (e.g., modular 
redundancy). 

 

Figure 6: A Generic Mapping Process 

5. Define variability points / design choices. As 
there is more than one possible mapping of a PIM to 
a target PSM, the PIM-PSM mapping should offer 
variability points to explicitly capture design 
choices. These variability points can be subject to 
future optimization steps. 

6. Resource allocation. As the core phase, the 
system architect assigns application types to 

resources (called resource allocation), which 
provide general rules / guidelines for the PIM-PSM 
mapping. From these high-level guidelines, the actual 
mapping instances (i.e. mapping of application 
instances to actual resources) could be partially 

automated to obtain the PSM model. A valid PIM-
PSM mapping should fulfill all design constraints 
(e.g. should not exceed HW limits like available 
memory). 

7. Scheduling and Optimization. In addition, 
further scheduling and optimization steps can be 
carried out after resource allocation, which is out of 
scope for the current paper. For further reference see 
in FRESCOR [23] 

8. Evaluate the quality of the mapping. The 
quality of the mapping can be evaluated against all 
functional and non-functional requirements, and 
certification means.  

The DIANA Approach 

We support the system architect by subdividing 
the PIM-PSM mapping process into well-defined 
design steps and by the precise definition of the 
interactions and interfaces at each step. Individual 
design steps are then organized into a complex 
workflow [24], which is closely aligned with the 
designated development process followed by the 
system builder (system integrator, function provider 
and platform provider.). In order to assist the system 
architect, our framework guarantees that a certain 
design step can only be started if all prerequisite steps 
are successfully completed. Our framework is easily 
customizable to incorporate additional design steps, if 
required. 

The high level workflow of the PIM-PSM 
mapping process as used in the DIANA project is 
depicted in Figure 7. The process consists of 22 steps 
organized into five groups. 

To illustrate some technicalities of our approach 
we use the simplified Simulink model (depicted in 
Figure 8) as the starting PIM model of the air 
conditioning case study. 

Application Group 

The group consists of steps to define the 
resource requirements of the applications and 
partitions used in a module and create a viable 
mapping that is compatible with the available 
resources and dependability requirements. 

 



 

Figure 7: Workflow of the DIANA PIM-PSM mapping process 

 



First, the PIADL and the PD models are 
imported into the framework. This step also resolves 
certain dependability attributes defined in the PIADL 
like redundancy degree of applications and messages 
(e.g., triple or double modular redundancy etc.). 

As the platform description does not include all 
information needed for the allocation process and 
configuration generation, the system architect needs 
to (i) define the memory requirements and 
compatibility mapping of the applications and (ii) 
new partitions or modify existing ones and define 
their memory requirements. 

 

Figure 8: PIM model of the Air Conditioning Case 

Study
1
  

To demonstrate how these steps are captured on 
model level, Figure 9 illustrates the low level model 
elements created for a partition (partitions creation 
step). Model Elements in yellow and dashed lines are 
newly created, while elements in green (and solid 
references) are already existing in the model. The 
tags <<Integration>> and <<PD>> represent the 
package of the model element. Partitions are 
defined/stored in the Platform Description model 
with separate model elements describing their 
corresponding memory requirements capturing the 
size, access (type) and type attributes. PSMRoot is 
the root element of the integration model and it holds 
references between the elements of the PIADL, PD 
and the PSM models. 

                                                   
1  © 2010 NLR 

For easier readability (i) attribute types are 
excluded from the figure and (ii) references and 
association are depicted by simple lines. 

As the final step in the group, all allocations of 
applications-to-partitions conform to the defined 
constraints and requirements are computed. This way 
the system architect can select a valid allocation and 
(if required) can take into account additional non-
functional requirements.  

 

Figure 9: Partition Creation 

The allocation problem is solved as a constraint 
satisfaction problem. 

Communication Group 
The group involves steps in the PIM-PSM 

Mapping editor that carry out the allocation of inter-
partition communication channels and the 
specification of ports residing on each end of these 
channels. 

The allocation is based on the architecture 
defined in the PIADL model (derived from a 
Simulink model), the selected application to partition 
mapping and the redundancy requirements of the 
applications. Based on this information the allocation 
algorithm creates the required ARINC 653 ports and 
connects them. 

Additionally, the system architect needs to 
define the ARINC 653 specific parts like the queue 
length and the VxWorks specific queuing protocol to 
be able to generate the configuration files. 

Figure 10 depicts a simple example how the 
allocated channels are visualised. In this case Data 
Monitoring application allocated over the I/O 
Processing partitions uses the Temp. channel to send 
the temperature value to the Refresh GUI application. 



 

 

Figure 10: Allocated Communication Channels 

 

Health Monitoring Group 
The group consists of steps to define the Health 

Monitoring tables for module, partition and 
application level along with the different error 
entities and actions to be carried out. 

All these definitions are done by the system 
architect by hand. The framework gives support for 
early validation (e.g., naming conventions, required 
action definitions etc.) based on the specification of 
the different tables and the system-specific 
requirements for health monitoring tables.. 

The defined tables are saved in the Platform 
Description model with the appropriate references 
from the PSMRoot of the Integration model. 

ICD Group 
In this group steps related to the description of 

interfaces and messages provided and required by 
applications. These are user driven mapping steps, 
where PIM types and messages, are refined with 
platform specific information like encoding, default 
value, etc.  

Figure 11 describes how the Temp PIM type is 
refined into the Int1_100 PSM representing an 
integer value with a domain of 1-100. The Int1_100 
type is based on the predefined 16 bit unsigned 
integer type from the ICD with additional constraints 
over its domain. Based on these PSM types, complex 
messages are defined following a similar way, where 
the ICD provides the basic structures like arrays, 
buffer, etc. 

 

Figure 11: Definition of the Temp value in ICD 

Artifact Generation Group  
Finally, when the prerequisite steps for a certain 

code generator is finished the actual textual 
representation is synthesized by separate dedicated 
code generators. 

In our case the ICD generator simple serializes 
the model into its XML representation using the built 
in support of the Eclipse Modeling Framework. As 
for the other artifacts we hand-coded the generators 
in java to derive the required formats defined by the 
two platforms. 

The communication architecture, depicted in 
Figure 8, is mapped to ARINC 653 ports through the 
defined mapping process and then automatically 
generated both the ARINC 653 and the VxWorks 653 
specific module and ApplicationDescription XML 
configuration tables. A fragment of the generated 
configuration tables capturing the communication 
channel depicted in Figure 10 is captured in Figure 
12. 

 

Figure 12: Example ARINC 653 Module and 

VxWorks Application Description configuration 



Traceability 
Additionally, as an essential requirement of DO-

178B certification, continuous traceability has been 
carried out from the high-level requirements to the 
deployed applications (depicted in Figure 13).  

 

Figure 13: Traceability between models and 

configuration artifacts 

In case of the design phase we used (i) inter-
model traceability based on the Integration Model 
that keeps track of all manipulations done during the 
PIM-PSM mapping process and (ii) model-to-
configuration traceability with XMI files connecting 
generated configuration elements to their 
corresponding model entities. This allowed end-to-
end traceability from the PIADL model to the 
generated configuration tables. It is important to 
mention that the current implementation requires an 
explicit definition of traceability elements between 
the various models. However, currently we are 
investigating special live model transformations [25] 
to give support for automatic generation of 
traceability elements without explicit definition. 

Verification and Validation Support 

Keeping the design and verification aspects 
tightly synchronized, enables early validation as close 
as possible to the corresponding model/code 
development time, thus providing better feedback and 
error detection. To support early validation of 
modeling artifacts during our development process 
we used contracts to guard each steps. 

Contracts 

During a development process certain steps 
require external COTS tools (e.g., Matlab, SAL, etc.) 
or user interaction to perform their task. In order to 
guarantee that the result of these steps is acceptable 
and the process can continue, the definition of 
contracts [26] is a well-known paradigm.  

The idea is to guard both the input and output of 
a step by specific constraints. Thus, a contract is 
composed of a precondition and a postcondition. In 
our interpretation a precondition defines constraints 
that need to be fulfilled by the input of the step in 
order to allow its execution, while the postcondition 
guarantees that the process can continue only if its 
constraints are satisfied by the output. 

In our approach we used graph patterns (GP) 
[27] to capture such contracts. GPs are frequently 
considered as the atomic units of model 
transformations. They represent conditions (or 
constraints) that have to be satisfied by a part of the 
underlying model. Based on these contracts we 
investigated two promising approaches to support 
early validation and verification. 

On-The-Fly Evaluation of Contracts 
One of the main advantage using contracts to 

specify constraints on the input and output (model) of 
each step in the development process is that it allows 
fine grain (step level) validation of model changes 
throughout the whole workflow. However, graph 
patterns can express complex model constraints 
containing cycles, attribute conditions, transitive 
closures and recursive calls. Additionally, as these 
queries are executed rather frequently in interactive 
modeling applications, they have a significant impact 
on the runtime performance of the tool, and also on 
the end user experience. 

In our framework to provide on-the-fly 
evaluation of constraints, we applied EMF-IncQuery, 
a state-of-the-art pattern matcher engine over EMF 
models based on incrementally maintained caches, 
resulting in (almost) instantaneous contract 
evaluation. More details are available in [28]. 

Without going into details the simplified 
example contract depicted in Figure 14 captures the 
condition that, “if there exist an Application with an 
ApplicationInstance (as the precondition), then after 
the allocation step there cannot be 
ApplicationInstances that are not allocated to a 



Partition (as the postcondition)”. For more details 
see [24]. 

 

Figure 14: Contract for Application Allocation 

Validation of end-to-end traceability 
One key question in end-to-end traceability is to 

demonstrate that any target element can be traced 
back to its corresponding requirement. Showing this 
ability in a model driven development process can be 
problematic as separate part of models can be parts of 
the traceability (e.g., in our case the integration 
model is also part of the traceability) resulting in 
complex trace paths. 

To solve this issue, our idea is to validate the 
existence of such trace paths through contracts and 
show that complete traceability is present in the 
whole mapping process from the PIADL down to the 
generated artifacts. The idea is based on the 
following assumptions: (i) defining the traceability 
relation, as a contract, between the input and output 
of a step is relatively simple, (ii) if a step is 
completed in the process and its contracts are 
validated then their postconditions can be treated as 
valid statements over the model, and finally, (iii) 
using the defined workflow of the development 
process all steps required for the generation of a 
configuration element can be followed back to its 
starting point (e.g., import step, creation step, etc.) 
allowing an induction based reasoning over the 
contracts of the traversed steps to show the existence 
of a valid traceability path.. However, it only proves 
the existence and does not provide the traceability 
matrix; future work is required to automatically 
generate it. 

Related Work 

There are numerous approaches in the literature 
introducing various model based techniques for the 
development of embedded system. Here we give a 
brief summary of some current EU research projects 

with significant relevance to design and verification 
of embedded systems involving model based 
techniques. 

INDEXSY [15] aims to realize industrial 
implementations of cross-domain architectural 
concepts [17] developed in the GENESYS [29] 
project and give tool support based on MDD for its 
three target domains: automotive, aerospace and 
railway. 

COCONUT [30] focuses on the definition of a 
formal framework [31] based on a tight integration of 
design and verification through refinement steps of 
an embedded platform design flow, from 
specifications to logic synthesis and software 
compilation.  

TopCased [32] is an open source tool-kit (over 
the Eclipse platform) for the design, development and 
deployment of safety critical system using novel 
MDD techniques and support for languages like 
AADL and SysML. 

CHESS [33] seeks to improve Model Driven 
Development practices and technologies to (i) better 
address safety, reliability and robustness 
functionalities as required by the aeronautical and 
railway industry and (ii) develop techniques to 
guarantee the correctness of assembled component 
embedded systems by reusing certification artifacts 
of the components used for the complete system. 

FRESCOR [23] aimed to integrate advanced 
flexible scheduling techniques directly into an 
embedded systems design methodology, covering all 
the levels involved in the implementation, from the 
OS primitives, through the middleware, up to the 
application level using contracts to define the 
application requirements. 

CHARTER [34] focuses on cost-reduction of 
certification of critical embedded systems by 
integrating real-time Java, model-driven 
development, rule-based compilation, and formal 
verification into a novel development process called 
Quality-Embedded Development (QED). 

Conclusion and Future Work 

Our approach demonstrated that Model-Driven 
Engineering can be effectively applied for the 
systematic development of ARINC 653 configuration 
tables. Additionally, we demonstrated the use of 



model based validation techniques such as (i) 
complete end-to-end traceability from the high-level 
models down to the generated artifacts and (ii) model 
based on-the-fly validation of design contracts during 
the development process. 

However, during the evaluation of the proposed 
technologies we have encountered gaps and 
shortcoming that point to future work and new 
research directions: 

One key issue for the success of MDE in the 
safety-critical domain is the certification of model 
transformation. MT serves as the backbone of almost 
all model based technologies from code and model 
synthesis through model validation techniques to 
simulation. Up to date many work has been done 
regarding the V&V of transformations [35], however, 
certification issues were rarely covered in recent 
publications. Additionally, the complexity of tools 
may impose high qualification costs on tool vendors  

As development of safety-critical system usually 
requires large number of developers the need for 
advanced collaborative support for the definition 
models like versioning, distributed development, 
access control etc. is becoming a key question 
[36][35]. 

Finally, MDE promises an easier way of 
integrating various tools based on a common 
integrated model (or model bus [32]) that allows their 
input and output models of the various tools to be 
treated in a common way. Additionally, it can give 
support for model based traceability a common 
requirement by various certification authorities. 
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