

GMV-SKYSOFT

Torre Fernão de Magalhães

Av. D. João II Lote 1.17.02, 7º Andar

1998 - 025 Lisboa Portugal

Property of GMV

© GMV, 2010; all rights reserved.

SIMA

Overview

© GMV, 2010; all rights reserved

11 PPUURRPPOOSSEE

Simulated Integrated Modular Avionics (
ARINC 653 Application Programming Interface (
systems that do not support
POSIX-compliant OSes; it is tested and optimised for the Native
(NPTL), available on OSes
version 4.6 or higher.

This document focuses on
core features of the SIMA tool chain and to
makeports and simout and, additionally, the Logbook System.

; all rights reserved

Simulated Integrated Modular Avionics (SIMA) is an execution environment,
653 Application Programming Interface (API) and robust partitioning

systems that do not support these features by themselves. SIMA is designed to
; it is tested and optimised for the Native POSIX

OSes like GNU/Linux, kernel version 2.6 or higher, and for

focuses on SIMA on Linux. Its purpose is to give a brief overview on the
core features of the SIMA tool chain and to describe the command line tools

and, additionally, the Logbook System.

SIMA Overview

Draft 0.5

Page 2 of 14

SIMA Overview

) is an execution environment, providing the
and robust partitioning to operating

is designed to run on all
POSIX Thread Library

higher, and for RTEMS,

Its purpose is to give a brief overview on the
the command line tools POS, MOS,

© GMV, 2010; all rights reserved

22 SSIIMMAA OOVVEERRVV

Simulated Integrated Modular Avionics (
ARINC 653 Application Programming Interface (
systems that do not support
POSIX-compliant OSes; it is tested and optimised for the Native
(NPTL), available on OSes
version 4.6 or higher.

The ARINC 653 standard specifies
System (RTOS), and, in addition, establishes a particular method
over time and memory.
foundation for the development of safety

ARINC 653 defines support for robust partitioning in on
processing unit, usually called a module, is able to host o
and to execute these applications
system, often called the Module Operating System (MOS), provides separation of the
avionics applications, such that

• Each partitioned f
shall reflect the frequency as well as the execution time of the specific application;

• A failure in one partitioned function cannot cause a failure in another partitioned
function.

In consequence, the partitioning approach
same time, eases verification, validation and certification.

The unit of partitioning is called a partition. In a given sense, a partition is equivalent to a
program in a single application environment: it comprises data, code and its own context
configuration attributes (see

Partitioning separates applications in two dimensions: space and time. Spatial separation
means that the memory of a partition is protected
of the scope of its own partition. Temporal separation means that only one application at a
time has access to system resources, including the processor; therefore only one
application is executing at one point in tim
between partitioned applications.

; all rights reserved

VVIIEEWW

Simulated Integrated Modular Avionics (SIMA) is an execution environment,
653 Application Programming Interface (API) and robust partitioning

systems that do not support these features by themselves. SIMA is designed to
; it is tested and optimised for the Native POSIX

OSes like GNU/Linux, kernel version 2.6 or higher, and for

The ARINC 653 standard specifies a programming interface for a Real
, and, in addition, establishes a particular method for partitioning resources

over time and memory. Today, this standard has been established as an important
foundation for the development of safety-critical systems in the avionics industry.

ARINC 653 defines support for robust partitioning in on-board systems, such that one
processing unit, usually called a module, is able to host one or more avionics applications

these applications independently. This can be achieved if the underlying
system, often called the Module Operating System (MOS), provides separation of the

such that

Each partitioned function has guaranteed access to the processor. The guarantees
shall reflect the frequency as well as the execution time of the specific application;

A failure in one partitioned function cannot cause a failure in another partitioned

the partitioning approach allows reducing on-board hardware and, at the
eases verification, validation and certification.

The unit of partitioning is called a partition. In a given sense, a partition is equivalent to a
application environment: it comprises data, code and its own context

configuration attributes (see Figure 1).

Figure 1: Partitioning

Partitioning separates applications in two dimensions: space and time. Spatial separation
means that the memory of a partition is protected. No application can access memory out
of the scope of its own partition. Temporal separation means that only one application at a
time has access to system resources, including the processor; therefore only one
application is executing at one point in time – there is no competition for system resources
between partitioned applications.

SIMA Overview

Draft 0.5

Page 3 of 14

SIMA Overview

) is an execution environment, providing the
and robust partitioning to operating

is designed to run on all
POSIX Thread Library

higher, and for RTEMS,

Real-Time Operating
for partitioning resources

established as an important
in the avionics industry.

board systems, such that one
ne or more avionics applications

independently. This can be achieved if the underlying
system, often called the Module Operating System (MOS), provides separation of the

unction has guaranteed access to the processor. The guarantees
shall reflect the frequency as well as the execution time of the specific application;

A failure in one partitioned function cannot cause a failure in another partitioned

board hardware and, at the

The unit of partitioning is called a partition. In a given sense, a partition is equivalent to a
application environment: it comprises data, code and its own context

Partitioning separates applications in two dimensions: space and time. Spatial separation
. No application can access memory out

of the scope of its own partition. Temporal separation means that only one application at a
time has access to system resources, including the processor; therefore only one

there is no competition for system resources

© GMV, 2010; all rights reserved

ARINC 653 defines a static configuration where each partition is assigned a set of
execution windows. The program in the partition associated with the current execution
window gains access to the processor. When the execution window terminates, the
program is preempted; when the next execution window starts, the program continues
execution from the point it was previously preempted

Processes within the scope of a partiti
scheduler with first-in-first

Processes in ARINC 653 must not be confused with processes in POSIX: In ARINC 653
processes in the same partition share th
separation between processes. However, since partitions are separated, processes in
different partitions cannot access each other’s memory. Communication between
processes in different partitions is achieved by port
communication end points either for reading or writing that are identified by a name that is
unique in the scope of the partition. Channels connect these ports transparently to
application code.

In SIMA, ARINC 653
processes are mapped
single POSIX program, containing user code and data, the
finally, the platform execution environment, i.e. t

The Module Operating System (MOS), controlling the diff
belonging to the same simulated module,
following picture illustrates this design:

The APEX services are implemented by a static library, called POS.
the APEX process scheduler on top of the
features are encapsulated within a core layer; this way
rely directly on POSIX, but on scheduling
advantage of this approach is enhanced
SIMA POS, running on bare hardware
subtle differences between diff
and hidden from the APEX

The MOS implements the
partitions, commands are exchanged with the

; all rights reserved

ARINC 653 defines a static configuration where each partition is assigned a set of
execution windows. The program in the partition associated with the current execution
window gains access to the processor. When the execution window terminates, the
program is preempted; when the next execution window starts, the program continues
execution from the point it was previously preempted.

Processes within the scope of a partition are scheduled by a priority-based preemptive
first-out (FIFO) order for processes with the same priority.

Processes in ARINC 653 must not be confused with processes in POSIX: In ARINC 653
processes in the same partition share the same address space. There is no memory
separation between processes. However, since partitions are separated, processes in
different partitions cannot access each other’s memory. Communication between
processes in different partitions is achieved by ports and channels. Ports are
communication end points either for reading or writing that are identified by a name that is
unique in the scope of the partition. Channels connect these ports transparently to

ARINC 653 partitions are mapped to POSIX processes and
 to POSIX threads. Each SIMA application is, hence, linked to

program, containing user code and data, the APEX code and data and,
the platform execution environment, i.e. the NPTL for Linux.

Module Operating System (MOS), controlling the different POSIX
belonging to the same simulated module, is likewise linked to one POSIX process.
following picture illustrates this design:

Figure 2: SIMA Architecture

The APEX services are implemented by a static library, called POS. The
process scheduler on top of the POSIX FIFO scheduler (sched_fifo

features are encapsulated within a core layer; this way main parts of the APEX
, but on scheduling policies implemented by the

advantage of this approach is enhanced portability - there is even an implementation of the
on bare hardware - and the fact that scheduler features that introduce

differences between different POSIX implementations are handled in the core
APEX implementation.

implements the APEX partition scheduler. To be able to suspend
partitions, commands are exchanged with the POS layer in the partitions

SIMA Overview

Draft 0.5

Page 4 of 14

SIMA Overview

ARINC 653 defines a static configuration where each partition is assigned a set of
execution windows. The program in the partition associated with the current execution
window gains access to the processor. When the execution window terminates, the
program is preempted; when the next execution window starts, the program continues

based preemptive
(FIFO) order for processes with the same priority.

Processes in ARINC 653 must not be confused with processes in POSIX: In ARINC 653
e same address space. There is no memory

separation between processes. However, since partitions are separated, processes in
different partitions cannot access each other’s memory. Communication between

s and channels. Ports are
communication end points either for reading or writing that are identified by a name that is
unique in the scope of the partition. Channels connect these ports transparently to

mapped to POSIX processes and ARINC 653
application is, hence, linked to a

code and data and,

POSIX processes,
is likewise linked to one POSIX process. The

The POS implements
sched_fifo). POSIX
APEX code do not

policies implemented by the POS itself. The
there is even an implementation of the

e fact that scheduler features that introduce
implementations are handled in the core layer

suspend and resume
 using signals and

© GMV, 2010; all rights reserved

shared memory segments. Obviously, this approach
threats, caused by random errors in the
correctly to the given commands
malicious application code
and developed, following safety critical software guidelines; its purpose is to
embedded applications. The
behaviour of an ARINC
standard Linux.

POS and MOS are designed to support real
programming interfaces of the
priorities. Additionally, all
locked in RAM, avoiding paging and the latency
and out. However, hard real
operating system kernel.
are possible: Deadlines must be restricted to the guarantees
Linux, or, alternatively, a kernel, patched with the
Thomas Gleixner, can be

; all rights reserved

shared memory segments. Obviously, this approach does not answer safety and security
threats, caused by random errors in the partitioned code. The POS
correctly to the given commands which may not be true in the case where faulty or
malicious application code corrupts the state of the POS. In fact, the POS

following safety critical software guidelines; its purpose is to
applications. The MOS, however, was not; the MOS does only simulate the

ARINC 653 compliant OS on top of non-safety aware systems like

are designed to support real-time applications. They use the
programming interfaces of the POSIX thread library, like FIFO scheduling
priorities. Additionally, all memory used during execution is created during initialisation and

, avoiding paging and the latency penalties caused by swapping pages in
and out. However, hard real-time guarantees cannot be met without a fully preemptive
operating system kernel. Standard Linux is not yet a preemptive kernel.
are possible: Deadlines must be restricted to the guarantees possible to be achieved on
Linux, or, alternatively, a kernel, patched with the PREEMPT-RT patch by Ing

be used to achieve guarantees of much lower granularity.

SIMA Overview

Draft 0.5

Page 5 of 14

SIMA Overview

does not answer safety and security
POS has to respond

which may not be true in the case where faulty or
POS was designed

following safety critical software guidelines; its purpose is to support
does only simulate the

safety aware systems like

time applications. They use the real-time
scheduling and thread

created during initialisation and
y swapping pages in

guarantees cannot be met without a fully preemptive
Standard Linux is not yet a preemptive kernel. Two alternatives

ossible to be achieved on
patch by Ingo Mólnar and

used to achieve guarantees of much lower granularity.

© GMV, 2010; all rights reserved

33 HHAARRDD RREEAALL--

The main problem, achieving hard real
between the arrival of an event (like an interrupt) and the
general purpose OS; Linux is designed to enhance
time systems aim at enhancing the worst
of impact on the system predictability.

Linux high latencies are a consequence of a non
contains large protected sections, where the kernel can
However, it is the user tasks, implementing the response to an

To overcome this situation, Ingo Mólnar, one of the authors of the
reworked the kernel code to reduce non
available as a patch, called PREEMPT

The latency that can be expected with the
configuration. Main drivers for latency are hardware interrupts, causing
active and to enter the remaining non
instance, the network interface, the
service interrupts coming from the board. This last
hardware and, especially, with all kinds of portable computers. There are scripts available to
reduce interrupts on your system, but it is not recommended to apply such
fully aware of what they do in detail. Disabling service
harm your hardware.

On systems with different hardware con

after running benchmarks for 24
multi-threaded environment with
multi-threaded environment with network enabled, but without a running X server.

 Runlevel

Desktop

Laptop

Table

Industry experience confirms that deadlines down to 100
system that runs graphical user interfaces (

possible. However, deadlines of 100
great for simulated avionics running on

; all rights reserved

--TTIIMMEE OONN LLIINNUUXX

The main problem, achieving hard real-time behaviour on Linux, is latency, de
between the arrival of an event (like an interrupt) and the execution of its response. As a

; Linux is designed to enhance the average response time, whereas real
enhancing the worst case response time as this is the fundamental factor

predictability.

Linux high latencies are a consequence of a non-preemptive kernel approach;
contains large protected sections, where the kernel can't be pre-empted
However, it is the user tasks, implementing the response to an event.

To overcome this situation, Ingo Mólnar, one of the authors of the NPTL, and
reworked the kernel code to reduce non-preemptible sequences to a minimum. This code is

PREEMPT-RT patch (see http://rt.wiki.kernel.org).

The latency that can be expected with the PREEMPT-RT patch depends on
guration. Main drivers for latency are hardware interrupts, causing the kernel to become

active and to enter the remaining non-preemptible sequences. Sources of interrupts are, for
instance, the network interface, the graphic card, typically when running an X server, and

from the board. This last kind of interrupts is worse with newer
especially, with all kinds of portable computers. There are scripts available to

reduce interrupts on your system, but it is not recommended to apply such scripts if you are not
do in detail. Disabling service interrupts, for instance, may seriously

erent hardware configurations, the following latencies have been measured,

s for 24 - 48 hours. All values in the table are in µs; runlevel 5 means a
threaded environment with network enabled and an X server running; runlevel 3 means a

environment with network enabled, but without a running X server.

Runlevel Best Case Average Worst Case

5 1 7

3 1 7

5 1 18

3 1 11

Table 1: Latency of preemptible Linux kernel

rms that deadlines down to 100 µs can be guaranteed
system that runs graphical user interfaces (GUI). Without GUIs, even shorter deadlines may be

ible. However, deadlines of 100µs are sufficient for typical avionics use cases and even
great for simulated avionics running on a desktop computer.

SIMA Overview

Draft 0.5

Page 6 of 14

SIMA Overview

defined as the time
execution of its response. As a

the average response time, whereas real-
case response time as this is the fundamental factor

preemptive kernel approach; the kernel
empted by a user task.

 Thomas Gleixner
to a minimum. This code is

patch depends on system
the kernel to become

sequences. Sources of interrupts are, for
graphic card, typically when running an X server, and

kind of interrupts is worse with newer
especially, with all kinds of portable computers. There are scripts available to

scripts if you are not
interrupts, for instance, may seriously

have been measured,

; runlevel 5 means a
network enabled and an X server running; runlevel 3 means a

environment with network enabled, but without a running X server.

Worst Case

54

17

62

48

s can be guaranteed even on a
shorter deadlines may be

for typical avionics use cases and even

© GMV, 2010; all rights reserved

44 TTHHEE PPOOSS LLIIBB

The POS library provides the ARINC 653
implements the

• ARINC 653 services of ARINC 653 Part 1 “Required Services”: Partition
Management, Process Management, Time Management, Inter
Partition Communications, Health Monitor Ser

• A subset of ARINC 653 Part 2 “Extended Services”: Logbook System.

The POS library is statically linked to the hosted application. It provides the library code
and data, including interfaces to other simulation components.

SIMA can run in two diffe

• Simulation of a multi

• Or executing a single partition that may or may not be part of a multi
system; this latter mode is called standalone mode.

The simplest way to use the
standalone execution, the program runs as an ordinary
separation from other APEX
good way for verifying the pr
files and allows application

The user code is linked against the POS library and a set of default objects:

• The main entry point that may be exchange by user code;

• Stubs for applicatio

The following figure illustrates this tool chain:

; all rights reserved

BBRRAARRYY

The POS library provides the ARINC 653 services to hosted applications. In particular, it

ARINC 653 services of ARINC 653 Part 1 “Required Services”: Partition
Management, Process Management, Time Management, Inter-Partition and Intra
Partition Communications, Health Monitor Services;

A subset of ARINC 653 Part 2 “Extended Services”: Logbook System.

The POS library is statically linked to the hosted application. It provides the library code
and data, including interfaces to other simulation components.

SIMA can run in two different modes:

Simulation of a multi-partition system scheduled by the MOS application;

Or executing a single partition that may or may not be part of a multi
system; this latter mode is called standalone mode.

way to use the POS library is to build a partition for standalone
standalone execution, the program runs as an ordinary POSIX process, there is not time

APEX applications. Running applications in standalone mode is a
good way for verifying the program functional behaviour. It does not require confi
les and allows application debugging.

The user code is linked against the POS library and a set of default objects:

The main entry point that may be exchange by user code;

Stubs for applications that do not use ports or logbooks

The following figure illustrates this tool chain:

Figure 3: SIMA Basic Tool Chain

SIMA Overview

Draft 0.5

Page 7 of 14

SIMA Overview

services to hosted applications. In particular, it

ARINC 653 services of ARINC 653 Part 1 “Required Services”: Partition
Partition and Intra-

A subset of ARINC 653 Part 2 “Extended Services”: Logbook System.

The POS library is statically linked to the hosted application. It provides the library code

by the MOS application;

Or executing a single partition that may or may not be part of a multi-partition

a partition for standalone execution. In
process, there is not time

applications in standalone mode is a
aviour. It does not require configuration

The user code is linked against the POS library and a set of default objects:

© GMV, 2010; all rights reserved

55 MMOOSS SSIIMMUULLAA

The purpose of the MOS program is to schedule and to health monitor partitioned
applications. The MOS works in three phases:

1. The configuration files are read and the corresponding entities like partitions and health
monitor tables are created in memory;

2. The MOS goes into real

3. The MOS enters the sched
resume partitions and wait for health monitoring events.

The MOS reads two c
simulator-specific information and the ARINC 653 configuration.

The partition scheduling is defi
levels: the Module_Schedule
Partition_Schedule contains a set of

A Window_Schedule defi
This way one partition may have n execution windows assigned to it.

The Window_Schedules
that is repeated during module run
window and the beginning of the next, the
window without a partition ass

In the SIMA configuration,
Each execution window may have up to three slices: the start slice, the
end slice.

The main slice is always present; it
application code itself. The start slice and
transportation. Only one process is allowed
listener. When the next exec
set this process from the WAITING to the RUNNING state. When the duration of the start
slice expires, the listener
duration of the main slice expires, the application is suspended, and
window has an end slice defi
slices are defined for a window, the duration
Window_Schedule.

; all rights reserved

AATTOORR

The purpose of the MOS program is to schedule and to health monitor partitioned
e MOS works in three phases:

The configuration files are read and the corresponding entities like partitions and health
monitor tables are created in memory;

The MOS goes into real-time mode and starts the partitioned applications;

The MOS enters the scheduling phase; from now on, the program will suspend and
resume partitions and wait for health monitoring events.

The MOS reads two configuration files: the main SIMA configuration file, containing
specific information and the ARINC 653 configuration.

The partition scheduling is defined in the ARINC 653 configuration file in
Module_Schedule contains one Partition_Schedule per

contains a set of Window_Schedules.

fines the starting point and the duration of one execution
This way one partition may have n execution windows assigned to it.

Window_Schedules together define the Module_Schedule or major exe
that is repeated during module run-time. If there is a gap between the end of one execution
window and the beginning of the next, the MOS automatically fills it up with an execution

ition assigned to it.

guration, Window_Schedules are split into smaller units, called
Each execution window may have up to three slices: the start slice, the main slice and the

The main slice is always present; it represents the time guaranteed for execution of the
application code itself. The start slice and the end slice are reserved for message
transportation. Only one process is allowed to execute during start and end slices:

execution window has a start slice defined, the MOS
from the WAITING to the RUNNING state. When the duration of the start

the listener is set back to WAITING and the application is resumed.
he main slice expires, the application is suspended, and

window has an end slice defined, the listener process will be set to RUNNING
ed for a window, the duration of the main slice is equal to the duration of the

SIMA Overview

Draft 0.5

Page 8 of 14

SIMA Overview

The purpose of the MOS program is to schedule and to health monitor partitioned

The configuration files are read and the corresponding entities like partitions and health

time mode and starts the partitioned applications;

uling phase; from now on, the program will suspend and

SIMA configuration file, containing

le in three hierarchy
per partition; each

nes the starting point and the duration of one execution window.

major execution frame
the end of one execution

lls it up with an execution

are split into smaller units, called slices.
main slice and the

time guaranteed for execution of the
the end slice are reserved for message

to execute during start and end slices: the UDP
MOS will explicitly

from the WAITING to the RUNNING state. When the duration of the start
is set back to WAITING and the application is resumed. When the

, if the execution
will be set to RUNNING. When no

of the main slice is equal to the duration of the

© GMV, 2010; all rights reserved

66 HHEEAALLTTHH MMOONN

Errors occurring during the execution of partitioned applications are reported to the MOS.
The MOS looks up the error in the configuration and applies the corresponding action.
Errors are handled on one of three possible
Actions on PARTITION and MODULE level are directly specified in the configuration.
Errors on PROCESS level are delegated to a user defined error handler process (EH).
When the MOS invokes the
the affected partition. Since the
it will preempt any other process and run

There are four sources of errors:

• Internal errors of the POS

• Deadline misses detected by the POS

• RAISE_APPLICTATION_ERROR issued by the application

• Signals from the Linux kernel

Most errors, like segmentation faults, numeric errors or stack overflows, cannot be
detected by the POS or MOS. Instead, the Linux kernel send
process, i.e. the APEX partition or the MOS program; the POS catches those signals and
reports the incident to the MOS, the MOS handles them directly. The next figure illustrates
this general behaviour:

The handling of the RAISE_APPLICATION_ERROR
common error handling. Unlike other error
the POS immediately invokes the EH. However, only errors, defined by the application
itself, may be raised by this service.

; all rights reserved

NNIITTOORRIINNGG

Errors occurring during the execution of partitioned applications are reported to the MOS.
The MOS looks up the error in the configuration and applies the corresponding action.
Errors are handled on one of three possible levels: MODULE, PARTITION or PROCESS.
Actions on PARTITION and MODULE level are directly specified in the configuration.
Errors on PROCESS level are delegated to a user defined error handler process (EH).

invokes the EH, the latter is started and the control returned to the
ected partition. Since the EH runs as the highest priority process within the partition,

it will preempt any other process and run immediately.

There are four sources of errors:

Internal errors of the POS

dline misses detected by the POS

RAISE_APPLICTATION_ERROR issued by the application

Signals from the Linux kernel

Most errors, like segmentation faults, numeric errors or stack overflows, cannot be
detected by the POS or MOS. Instead, the Linux kernel sends a signal to the POSIX
process, i.e. the APEX partition or the MOS program; the POS catches those signals and
reports the incident to the MOS, the MOS handles them directly. The next figure illustrates

Figure 4: SIMA Error Handling

RAISE_APPLICATION_ERROR service is an exception to the
common error handling. Unlike other errors, this error is not delegated to the MOS, instead,
the POS immediately invokes the EH. However, only errors, defined by the application
itself, may be raised by this service.

SIMA Overview

Draft 0.5

Page 9 of 14

SIMA Overview

Errors occurring during the execution of partitioned applications are reported to the MOS.
The MOS looks up the error in the configuration and applies the corresponding action.

levels: MODULE, PARTITION or PROCESS.
Actions on PARTITION and MODULE level are directly specified in the configuration.
Errors on PROCESS level are delegated to a user defined error handler process (EH).

returned to the POS of
priority process within the partition,

Most errors, like segmentation faults, numeric errors or stack overflows, cannot be
s a signal to the POSIX

process, i.e. the APEX partition or the MOS program; the POS catches those signals and
reports the incident to the MOS, the MOS handles them directly. The next figure illustrates

service is an exception to the
, this error is not delegated to the MOS, instead,

the POS immediately invokes the EH. However, only errors, defined by the application

© GMV, 2010; all rights reserved

77 PPOORRTTSS

ARINC 653 applications use ports to communicate with the outside world. Po
memory areas within the partition address space where messages are written
from by application code. If ports are connected to a channel, the
port are copied to the memory area of the destination port.

This transport mechanism is invisible to the application. It is also transparent
application where the other port is located: In a partition on the same
computer.

Channels are defined in the
and one or more destination ports. The
messages are sent to one destination
destination ports that are
environment with 1:1 relation between ports and a multicast environment with 1:n relation.

The ARINC 653 configuration defi
lower level entities implementing ports is out of the scope
ARINC 653 ports to UDP ports on Linux.
mapping is given in the SIMA main configuration fi

The configuration is not read directly by the
from the configuration using the

makeports <sima_config> <partition> > <c

makeports config/sima.xml System > systemports.c

In a makefile the command could be used like this:

systemports.c: config/sima.xml config/a653.xml

makeports config/sima.xml > systemports.c

systemports.o: systemports.c

...

system: ... systemports.o ...

...

The following figure shows the tool chain for the generation of ports:

; all rights reserved

653 applications use ports to communicate with the outside world. Po
memory areas within the partition address space where messages are written
from by application code. If ports are connected to a channel, the messages in a source
port are copied to the memory area of the destination port.

t mechanism is invisible to the application. It is also transparent
application where the other port is located: In a partition on the same module or on another

ned in the ARINC 653 configuration as a relation between
one or more destination ports. The ARINC 653 standard leaves it open whether

messages are sent to one destination or all destinations. SIMA sends a message to all
destination ports that are configured. This way, it is possible to emulate

with 1:1 relation between ports and a multicast environment with 1:n relation.

figuration defines the logical relation between ports. The
lower level entities implementing ports is out of the scope of the standard.

653 ports to UDP ports on Linux. The additional information needed by this
SIMA main configuration file.

guration is not read directly by the POS. Instead, a C-stub must
guration using the makeports tool. The makeports tool is called as follows:

makeports <sima_config> <partition> > <c-file>

makeports config/sima.xml System > systemports.c

In a makefile the command could be used like this:

config/sima.xml config/a653.xml

makeports config/sima.xml > systemports.c

systemports.o: systemports.c

system: ... systemports.o ...

The following figure shows the tool chain for the generation of ports:

Figure 5: Ports Tool Chain

SIMA Overview

Draft 0.5

Page 10 of 14

SIMA Overview

653 applications use ports to communicate with the outside world. Ports are
memory areas within the partition address space where messages are written to or read

messages in a source

t mechanism is invisible to the application. It is also transparent to the
module or on another

guration as a relation between a source port
653 standard leaves it open whether

sends a message to all
gured. This way, it is possible to emulate a simple unicast

with 1:1 relation between ports and a multicast environment with 1:n relation.

nes the logical relation between ports. The mapping to
standard. SIMA maps

information needed by this

stub must be generated
tool is called as follows:

© GMV, 2010; all rights reserved

The channel between ports is implemented by an internal process, called
_apx_udp_listen. The process is automatically started when the application
connected to the MOS or with the

In standalone mode, this process runs with a priority lower than user process
This implies that messages are only sent and received when no user
implies also that the transportation mechanism interferes
These restrictions are acceptable for debugging,
complete IMA system. For this purpose, time slices are used in the MOS

; all rights reserved

The channel between ports is implemented by an internal process, called
. The process is automatically started when the application

or with the --connect option given in standalone mode.

this process runs with a priority lower than user process
This implies that messages are only sent and received when no user process is ready. It
implies also that the transportation mechanism interferes with the user process activity.

estrictions are acceptable for debugging, but certainly not for the simulation of a
For this purpose, time slices are used in the MOS.

SIMA Overview

Draft 0.5

Page 11 of 14

SIMA Overview

The channel between ports is implemented by an internal process, called
. The process is automatically started when the application is

option given in standalone mode.

this process runs with a priority lower than user process priorities.
process is ready. It

with the user process activity.
but certainly not for the simulation of a

© GMV, 2010; all rights reserved

88 SSIIMMOOUUTT

The SIMOUT program shows the output of the
environment based on the curses
the MOS automatically, using the value in the Startup attribute of the
configuration as path to the MOS

When the MOS and the partitions have been started, an output as the following,
SIMOUT with five partitions, is presented:

The figure shows a terminal where a simulated module is running. There are five partition
called “Control”, “Dummy 1” through “Dummy 3”, “System”. Below, the output of the MOS
simulator is shown. Since the system is called like the first partition, “Control”
the MOS window.

; all rights reserved

program shows the output of the MOS and up to six partitions in
curses library, available in most Linux distributions.

automatically, using the value in the Startup attribute of the MOS node
MOS startup script.

partitions have been started, an output as the following,
partitions, is presented:

Figure 6: Terminal with SIMOUT

The figure shows a terminal where a simulated module is running. There are five partition
called “Control”, “Dummy 1” through “Dummy 3”, “System”. Below, the output of the MOS
simulator is shown. Since the system is called like the first partition, “Control”

SIMA Overview

Draft 0.5

Page 12 of 14

SIMA Overview

and up to six partitions in a graphical
. SIMOUT invokes
node in the SIMA

partitions have been started, an output as the following, showing

The figure shows a terminal where a simulated module is running. There are five partitions,
called “Control”, “Dummy 1” through “Dummy 3”, “System”. Below, the output of the MOS

 is also the title of

© GMV, 2010; all rights reserved

99 SSIIMMAA LLOOGGBBOO

ARINC 653 logbooks services are implemented by SIMA through system partition, shared
memory and ordinary files. A system partition is used to engrave messages in the logbook,
it reads from the IN_PROGRESS

purpose is to provide the ARINC 653 logbooks two step writing behaviour
demanded for engraving messages belong
not to the application partition that owns the logbook.

A shared memory is used t

partition that owns the logbook and to the system partition that engraves the messages.
The NVM, implemented by a file is also accessed by both partitions. The application
partition writes messages to the shared memory and accesses the NVM for reading
operations. While the system partition reads messages from the

memory and writes those messages in the NVM file.
elements within SIMA implementation.

Within a partition schedule window
until this buffer is full. In a second step, at the system partition schedule window, the
messages are engraved to the NVM.

The SIMA system integrator must be aware that whenever a logbook is specified within a
module, a system partition must also
NVM for writing operations is taken from the syste
time should be provided to engrave the messages from the

The position of the system partition schedule windows in the major time frame and the
amount of time attributed for its execution determines when the messages are actually
engraved; large logbooks (in terms of

schedule windows for system partitions or more frequent schedule windows within a major
time frame than small logbooks. The messages written to the

only change status to ENGRAVED

ordinary files are used as NVM, the time required for messages to be engraved depends
on the time required by the underlying platform to access files.

; all rights reserved

OOOOKKSS

ARINC 653 logbooks services are implemented by SIMA through system partition, shared
memory and ordinary files. A system partition is used to engrave messages in the logbook,

IN_PROGRESS buffer and engraves in the non-volatile memory (

purpose is to provide the ARINC 653 logbooks two step writing behaviour
demanded for engraving messages belongs to the system partition schedule window and
not to the application partition that owns the logbook.

A shared memory is used to realize the logbook IN_PROGRESS buffer, it is visible to the

partition that owns the logbook and to the system partition that engraves the messages.
The NVM, implemented by a file is also accessed by both partitions. The application

ages to the shared memory and accesses the NVM for reading
operations. While the system partition reads messages from the IN_PROGRESS

memory and writes those messages in the NVM file. Figure 7 illustrates the logbook
elements within SIMA implementation.

Figure 7 - SIMA Logbook

hin a partition schedule window, messages can be written to the intermediate
until this buffer is full. In a second step, at the system partition schedule window, the
messages are engraved to the NVM.

The SIMA system integrator must be aware that whenever a logbook is specified within a
module, a system partition must also exist in the module. The time spent for accessing the
NVM for writing operations is taken from the system partition schedule windows. Enough

should be provided to engrave the messages from the IN_PROGRESS

The position of the system partition schedule windows in the major time frame and the
amount of time attributed for its execution determines when the messages are actually
engraved; large logbooks (in terms of IN_PROGRESS buffer capacity) require

hedule windows for system partitions or more frequent schedule windows within a major
time frame than small logbooks. The messages written to the IN_PROGRESS

ENGRAVED after the execution of such system partition. Because

rdinary files are used as NVM, the time required for messages to be engraved depends
on the time required by the underlying platform to access files.

SIMA Overview

Draft 0.5

Page 13 of 14

SIMA Overview

ARINC 653 logbooks services are implemented by SIMA through system partition, shared
memory and ordinary files. A system partition is used to engrave messages in the logbook,

volatile memory (NVM). Its

purpose is to provide the ARINC 653 logbooks two step writing behaviour – the time
to the system partition schedule window and

buffer, it is visible to the

partition that owns the logbook and to the system partition that engraves the messages.
The NVM, implemented by a file is also accessed by both partitions. The application

ages to the shared memory and accesses the NVM for reading
IN_PROGRESS shared

illustrates the logbook

n be written to the intermediate buffer
until this buffer is full. In a second step, at the system partition schedule window, the

The SIMA system integrator must be aware that whenever a logbook is specified within a
exist in the module. The time spent for accessing the

m partition schedule windows. Enough
IN_PROGRESS buffer.

The position of the system partition schedule windows in the major time frame and the
amount of time attributed for its execution determines when the messages are actually

buffer capacity) require longer

hedule windows for system partitions or more frequent schedule windows within a major
IN_PROGRESS buffer will

after the execution of such system partition. Because

rdinary files are used as NVM, the time required for messages to be engraved depends

© GMV, 2010; all rights reserved

Notice that one system partition can be used to engrave messages from all the logbooks in
the module (default). The system integrator is responsible for specifying appropriate
schedule windows for this partition as it will impact the application partitions behaviour
(messages state transition).

Like SIMA ports, SIMA logbooks require information that is not specified in the ARINC
configuration. The name for the logbook NVM and a key for the shared memory must be
provided within SIMA configuration file. This information (together with the ARINC
configuration information) is used by the POS to allocate and initialize the resources
(shared memory and files) before the logbook is used.

As illustrated in the listing below, a

description at SIMA configura

name in the LogbookName

The Logbook xml node is a child node of

file.

<Logbook
LogbookName
NVMName="P2LB1"
DeviceType=
LogbookKey=

</Logbook>

SIMA provides a tool for creating: (i) stubs that provide the POS
configuration files (both ARINC 653 and SIMA main configuration), (ii) files required for the
logbook NVM and (iii) logbooks system partition. For generating logbook stubs,
makebooks is used as exemplified below:

makebooks <sima_conf

makebooks config/sima.xml "Flight Controls" logbook_stub.c

In this example the input for

(config/sima.xml) and the name of logbook owner partition (“

output, makebooks generates the stub for the application partition and the files required by

the logbook NVM. The generated stub source code is named according to the third
argument provided in the line invoking

example.

When used with the parameter

partition that engraves the logbook messages:

makebooks --system

makebooks --system config/sima.xml "" system_partition.c

Notice in the example that the parameter

therefore the generated system partition will engrave messages from all logbooks declared
in SIMA and corresponding ARINC
partitions to engrave messages from one logbook only by giving this logbook owner
partition name as parameter. It can be used for the partition (and the system partition)
execution in standalone mode or for distributing the engrave process through different
system partitions within the module.

; all rights reserved

Notice that one system partition can be used to engrave messages from all the logbooks in
ult). The system integrator is responsible for specifying appropriate

schedule windows for this partition as it will impact the application partitions behaviour
(messages state transition).

Like SIMA ports, SIMA logbooks require information that is not specified in the ARINC
configuration. The name for the logbook NVM and a key for the shared memory must be
provided within SIMA configuration file. This information (together with the ARINC

figuration information) is used by the POS to allocate and initialize the resources
(shared memory and files) before the logbook is used.

As illustrated in the listing below, a DeviceType node is also specified in the logbook

description at SIMA configuration. Currently, only one type is defined; “file

LogbookName node must be the same given in the ARINC 653 configuration.

xml node is a child node of Partition node within SIMA xml configuration

Name="ManagementData"
"P2LB1"

="file"
="60097"/>

SIMA provides a tool for creating: (i) stubs that provide the POS with information from the
configuration files (both ARINC 653 and SIMA main configuration), (ii) files required for the
logbook NVM and (iii) logbooks system partition. For generating logbook stubs,

is used as exemplified below:

makebooks <sima_config> <partition> <stub-c-file>

makebooks config/sima.xml "Flight Controls" logbook_stub.c

In this example the input for makebooks is a SIMA configuration file at

) and the name of logbook owner partition (“Flight Controls

generates the stub for the application partition and the files required by

the logbook NVM. The generated stub source code is named according to the third
argument provided in the line invoking makebooks: logbook_stub.c

n used with the parameter --system, the makebooks tool generates the system

t engraves the logbook messages:

system <sima_config> <partition>

<system-partition-c-file>

system config/sima.xml "" system_partition.c

Notice in the example that the parameter <partition name> was given as empty;

therefore the generated system partition will engrave messages from all logbooks declared
and corresponding ARINC 653 configuration. It is possible to generate system

titions to engrave messages from one logbook only by giving this logbook owner
partition name as parameter. It can be used for the partition (and the system partition)
execution in standalone mode or for distributing the engrave process through different
ystem partitions within the module.

SIMA Overview

Draft 0.5

Page 14 of 14

SIMA Overview

Notice that one system partition can be used to engrave messages from all the logbooks in
ult). The system integrator is responsible for specifying appropriate

schedule windows for this partition as it will impact the application partitions behaviour

Like SIMA ports, SIMA logbooks require information that is not specified in the ARINC
configuration. The name for the logbook NVM and a key for the shared memory must be
provided within SIMA configuration file. This information (together with the ARINC

figuration information) is used by the POS to allocate and initialize the resources

node is also specified in the logbook

file”. The logbook

node must be the same given in the ARINC 653 configuration.

node within SIMA xml configuration

information from the
configuration files (both ARINC 653 and SIMA main configuration), (ii) files required for the
logbook NVM and (iii) logbooks system partition. For generating logbook stubs,

makebooks config/sima.xml "Flight Controls" logbook_stub.c

is a SIMA configuration file at

Flight Controls”). As

generates the stub for the application partition and the files required by

the logbook NVM. The generated stub source code is named according to the third
logbook_stub.c according to the

tool generates the system

system config/sima.xml "" system_partition.c

was given as empty;

therefore the generated system partition will engrave messages from all logbooks declared
configuration. It is possible to generate system

titions to engrave messages from one logbook only by giving this logbook owner
partition name as parameter. It can be used for the partition (and the system partition)
execution in standalone mode or for distributing the engrave process through different

